Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = African carbon flux

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5608 KB  
Article
Wildfires and Climate Change as Key Drivers of Forest Carbon Flux Variations in Africa over the Past Two Decades
by Lianglin Zhang and Zhenke Zhang
Fire 2025, 8(8), 333; https://doi.org/10.3390/fire8080333 - 20 Aug 2025
Viewed by 266
Abstract
Forests play a vital role in the global carbon cycle; however, the carbon sink capacity of African forests is increasingly threatened by wildfires, rising temperatures, and ecological degradation. This study analyzes the spatiotemporal dynamics of forest carbon fluxes across Africa from 2001 to [...] Read more.
Forests play a vital role in the global carbon cycle; however, the carbon sink capacity of African forests is increasingly threatened by wildfires, rising temperatures, and ecological degradation. This study analyzes the spatiotemporal dynamics of forest carbon fluxes across Africa from 2001 to 2023, based on multi-source remote sensing and climate datasets. The results show that wildfires have significantly disrupted Africa’s carbon balance over the past two decades. From 2001 to 2023, fire activity was most intense in the woodland–savanna transition zones of Central and Southern Africa. In countries such as the Democratic Republic of the Congo, Angola, Mozambique, and Zambia, each recorded burned areas exceeding 500,000 km2, along with high recurrence rates (e.g., up to 0.7584 fires per year in South Sudan). These fire-affected regions often exhibited high ecological sensitivity and carbon density, which led to pronounced disturbances in carbon fluxes. Nevertheless, the Democratic Republic of the Congo maintained an average annual net carbon sink of 74.2 MtC, indicating a high potential for ecological recovery. In contrast, Liberia and Eswatini exhibited net carbon emissions in fire-affected areas, suggesting weaker ecosystem resilience. These findings underscore the urgent need to incorporate wildfire disturbances into forest carbon management and climate mitigation strategies. In addition, climate variables such as temperature and soil moisture also influence carbon fluxes, although their effects display substantial spatial heterogeneity. On average, a 1 °C increase in temperature leads to an additional 0.347 (±1.243) Mt CO2 in emissions, while a 1% increase in soil moisture enhances CO2 removal by 1.417 (±8.789) Mt. However, compared to wildfires, the impacts of these climate drivers are slower and more spatially variable. Full article
Show Figures

Figure 1

18 pages, 4578 KB  
Article
Mitigating Membrane Fouling in Abattoir Wastewater Treatment: Integration of Pretreatment Step with Zwitterion Modified Graphene Oxide–Polyethersulfone Composite Membranes
by Meladi L. Motloutsi, Funeka Matebese, Mxolisi M. Motsa, Muthumuni Managa and Richard M. Moutloali
Membranes 2024, 14(11), 227; https://doi.org/10.3390/membranes14110227 - 30 Oct 2024
Cited by 2 | Viewed by 1767
Abstract
Composite polyethersulfone (PES) membranes containing N-aminoethyl piperazine propane sulfonate (AEPPS)-modified graphene oxide (GO) were integrated with either of the two pretreatment processes (activated carbon (AC) adsorption or polyelectrolyte coagulation) to assess their effectiveness in mitigating membrane fouling during the treatment of abattoir wastewater. [...] Read more.
Composite polyethersulfone (PES) membranes containing N-aminoethyl piperazine propane sulfonate (AEPPS)-modified graphene oxide (GO) were integrated with either of the two pretreatment processes (activated carbon (AC) adsorption or polyelectrolyte coagulation) to assess their effectiveness in mitigating membrane fouling during the treatment of abattoir wastewater. The AEPPS@GO-modified membranes, as compared to the pristine PES membranes, showed improved hydrophilicity, with water uptake increasing from 72 to 118%, surface porosity increasing from 2.34 to 27%, and pure water flux (PWF) increasing from 235 to 673 L.m−2h−1. The modified membranes presented improved antifouling properties, with the flux recovery ratio (FRR) increasing from 59.5 to 93.3%. This study compared the effectiveness of the two pretreatment processes, AC, coagulation, and the integrated system (coagulation/AC-UF membrane), in the removal of natural organic matter (NOM) and improvement of abattoir wastewater’s pH, electrical conductivity, TDS, and turbidity. The integrated systems produced improved water quality in terms of pH, EC, TDS, turbidity, and organic content. The fluorescence excitation–emission matrix (FEEM) analysis exhibited almost no fluorescence peak post-treatment following organic loading removal. The quality of the water met the South African non-potable water reuse standards. The sole membrane treatment systems exhibited good fouling resistance without the pretreatment systems; however, integrating these systems can offer extended longer filtration periods, thereby assisting in cost aspects of the abattoir wastewater treatment system. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

31 pages, 4772 KB  
Review
Carbon Sequestration by Tropical Trees and Crops: A Case Study of Oil Palm
by Denis J. Murphy
Agriculture 2024, 14(7), 1133; https://doi.org/10.3390/agriculture14071133 - 12 Jul 2024
Cited by 9 | Viewed by 10520
Abstract
Carbon sequestration by photosynthetic organisms is the principal mechanism for the absorption of atmospheric CO2. Since the 1950s, however, the global carbon cycle has been distorted as increased anthropogenic CO2 emissions have greatly outstripped rates of carbon sequestration, with a [...] Read more.
Carbon sequestration by photosynthetic organisms is the principal mechanism for the absorption of atmospheric CO2. Since the 1950s, however, the global carbon cycle has been distorted as increased anthropogenic CO2 emissions have greatly outstripped rates of carbon sequestration, with a 50% increase in atmospheric CO2 levels in less than a century, leading to perturbation of global climate systems and threatening food production and social stability. In order to address the current imbalance in CO2 flux, it is important to both reduce net emissions and promote sequestration. To address the latter issue, we need to better understand the roles of systems, such as natural forests, coastal wetlands, and tropical croplands, in carbon sequestration and devise strategies to facilitate net CO2 uptake. Carbon sequestration by tropical trees and crops already removes in excess of 1000 million tonnes of atmospheric CO2 annually but is threatened by anthropogenic activities such as deforestation and the drainage of carbon-rich peatland. Improvements in carbon sequestration can be achieved by policies such as growing tropical crops as part of agroforestry systems, enforcing limitations on deforestation and the use of peatland, and auditing the carbon impact of major cropping systems in order to focus on those crops that deliver both high yields and carbon efficiency. As an initial step in this process, a detailed case study is presented on the tropical tree crop, the African oil palm, Elaeis guineensis. This analysis includes a comparison of the carbon sequestration potential of oil palm with that of tropical forests and other oil crops, the biomass sequestration potential of oil palm and current and future strategies aimed at achieving net-zero carbon targets for oil palm and related crops. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

22 pages, 2700 KB  
Article
1982–2010 Trends of Light Use Efficiency and Inherent Water Use Efficiency in African vegetation: Sensitivity to Climate and Atmospheric CO2 Concentrations
by Abdoul Khadre Traore, Philippe Ciais, Nicolas Vuichard, Natasha MacBean, Cecile Dardel, Benjamin Poulter, Shilong Piao, Joshua B. Fisher, Nicolas Viovy, Martin Jung and Ranga Myneni
Remote Sens. 2014, 6(9), 8923-8944; https://doi.org/10.3390/rs6098923 - 22 Sep 2014
Cited by 25 | Viewed by 9125
Abstract
Light and water use by vegetation at the ecosystem level, are key components for understanding the carbon and water cycles particularly in regions with high climate variability and dry climates such as Africa. The objective of this study is to examine recent trends [...] Read more.
Light and water use by vegetation at the ecosystem level, are key components for understanding the carbon and water cycles particularly in regions with high climate variability and dry climates such as Africa. The objective of this study is to examine recent trends over the last 30 years in Light Use Efficiency (LUE) and inherent Water Use Efficiency (iWUE*) for the major biomes of Africa, including their sensitivities to climate and CO2. LUE and iWUE* trends are analyzed using a combination of NOAA-AVHRR NDVI3g and fAPAR3g, and a data-driven model of monthly evapotranspiration and Gross Primary Productivity (based on flux tower measurements and remote sensing fAPAR, yet with no flux tower data in Africa) and the ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) process-based land surface model driven by variable CO2 and two different gridded climate fields. The iWUE* data product increases by 10%–20% per decade during the 1982–2010 period over the northern savannas (due to positive trend of vegetation productivity) and the central African forest (due to positive trend of vapor pressure deficit). In contrast to the iWUE*, the LUE trends are not statistically significant. The process-based model simulations only show a positive linear trend in iWUE* and LUE over the central African forest. Additionally, factorial model simulations were conducted to attribute trends in iWUE and LUE to climate change and rising CO2 concentrations. We found that the increase of atmospheric CO2 by 52.8 ppm during the period of study explains 30%–50% of the increase in iWUE* and >90% of the LUE trend over the central African forest. The modeled iWUE* trend exhibits a high sensitivity to the climate forcing and environmental conditions, whereas the LUE trend has a smaller sensitivity to the selected climate forcing. Full article
(This article belongs to the Special Issue Monitoring Global Vegetation with AVHRR NDVI3g Data (1981-2011))
Show Figures

Graphical abstract

Back to TopTop