Wildfires and Climate Change as Key Drivers of Forest Carbon Flux Variations in Africa over the Past Two Decades
Abstract
1. Introduction
2. Data and Methods
2.1. Data Sources
2.1.1. Vegetation and Ecosystem Data
2.1.2. Climate Variables
2.1.3. Soil and Forest Disturbance Variables
2.1.4. Human Footprint Index
2.1.5. Forest Carbon Flux Products
2.2. Method
2.2.1. Estimation of Forest Carbon Fluxes
2.2.2. Geographically Weighted Regression Model
3. Results
3.1. Spatiotemporal Dynamics of African Forests
3.2. Spatial Patterns of Forest Carbon Fluxes
3.2.1. Spatial Distribution of Forest Carbon Emissions
3.2.2. Spatial Distribution of Forest Carbon Removals
3.2.3. Spatial Distribution of Net Carbon Flux
3.3. Drivers of Forest Carbon Fluxes
3.3.1. Direct Impacts of Wildfires on Forest Carbon Fluxes
3.3.2. Environmental Modulators of Forest Carbon Dynamics
4. Discussion
4.1. Changes in African Forests and Their Ecological Significance
4.2. Spatial Patterns of Forest Carbon Flux and Key Driving Mechanisms
4.3. Limitations and Recommendations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anderegg, W.R.L.; Trugman, A.T.; Badgley, G.; Anderson, C.M.; Bartuska, A.; Ciais, P.; Field, C.B.; Freeman, J.; Goetz, S.J.; Hicke, J.A.; et al. Climate-driven risks to the climate mitigation potential of forests. Science 2020, 368, eaaz7005. [Google Scholar] [CrossRef] [PubMed]
- Busch, J.; Bukoski, J.J.; Cook-Patton, S.C.; Griscom, B.; Kaczan, D.; Potts, M.D.; Yi, Y.; Vincent, J.R. Cost-effectiveness of natural forest regeneration and plantations for climate mitigation. Nat. Clim. Change 2024, 14, 996–1002. [Google Scholar] [CrossRef]
- Ke, P.; Ciais, P.; Sitch, S.; Li, W.; Bastos, A.; Liu, Z.; Xu, Y.; Gui, X.; Bian, J.; Goll, D.S.; et al. Low latency carbon budget analysis reveals a large decline of the land carbon sink in 2023. Natl. Sci. Rev. 2024, 11, nwae367. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Doughty, C.E.; Metcalfe, D.B.; Girardin, C.A.J.; Farfán Amézquita, F.; Galiano Cabrera, D.; Huaraca Huasco, W.; Silva-Espejo, J.E.; Araujo-Murakami, A.; da Costa, M.C.; Rocha, W.; et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 2015, 519, 78–82. [Google Scholar] [CrossRef]
- Li, W.; Ciais, P.; Wang, Y.; Yin, Y.; Peng, S.; Zhu, Z.; Bastos, A.; Yue, C.; Ballantyne, A.; Broquet, G.; et al. Recent changes in global photosynthesis and terrestrial ecosystem respiration constrained from multiple observations. Geophys. Res. Lett. 2018, 45, 1058–1068. [Google Scholar] [CrossRef]
- Su, Y.; Li, X.; Zhang, C.; Yan, W.; Ciais, P.; Cook-Patton, S.C.; Phillips, O.L.; Shang, J.; Cescatti, A.; Chen, J.-M.; et al. Carbon accumulation rate peaks at 1,000-m elevation in tropical planted and regrowth forests. One Earth 2025, 8, 101147. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Hayes, D. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef]
- Pugh, T.A.M.; Lindeskog, M.; Smith, B.; Poulter, B.; Arneth, A.; Haverd, V.; Calle, L. Role of forest regrowth in global carbon sink dynamics. Proc. Natl. Acad. Sci. USA 2019, 116, 4382–4387. [Google Scholar] [CrossRef]
- Gatti, L.V.; Basso, L.S.; Miller, J.B.; Gloor, M.; Gatti Domingues, L.; Cassol, H.L.G.; Tejada, G.; Aragão, L.E.O.C.; Nobre, C.; Peters, W.; et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 2021, 595, 388–393. [Google Scholar] [CrossRef]
- Feng, Y.; Ciais, P.; Wigneron, J.-P.; Xu, Y.; Ziegler, A.D.; van Wees, D.; Fendrich, A.N.; Spracklen, D.V.; Sitch, S.; Brandt, M.; et al. Global patterns and drivers of tropical aboveground carbon changes. Nat. Clim. Change 2024, 14, 1064–1070. [Google Scholar] [CrossRef]
- Büntgen, U.; Krusic, P.J.; Piermattei, A.; Coomes, D.A.; Esper, J.; Myglan, V.S.; Kirdyanov, A.V.; Camarero, J.J.; Crivellaro, A.; Körner, C. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nat. Commun. 2019, 10, 2171. [Google Scholar] [CrossRef] [PubMed]
- Pennisi, E. Tropical forests store carbon despite warming. Science 2020, 368, 813. [Google Scholar] [CrossRef] [PubMed]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Gregor, L.; Hauck, J.; Le Quéré, C.; Peters, G.P.; Peters, W.; Pongratz, J.; et al. Global Carbon Budget 2022. Earth Syst. Sci. Data 2022, 14, 4811–4900. [Google Scholar] [CrossRef]
- Falkowski, P.; Scholes, R.J.; Boyle, E.; Canadell, J.; Canfield, D.; Elser, J.; Gruber, N.; Hibbard, K.; Högberg, P.; Linder, S.; et al. The global carbon cycle: A test of our knowledge of Earth as a system. Science 2000, 290, 291–296. [Google Scholar] [CrossRef]
- Qin, Y.; Xiao, X.; Wigneron, J.-P.; Ciais, P.; Brandt, M.; Fan, L.; Li, X.; Crowell, S.; Wu, X.; Doughty, R.; et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Change 2021, 11, 442–448. [Google Scholar] [CrossRef]
- Gauci, V.; Pangala, S.R.; Shenkin, A.; Teh, Y.A.; Richards, M.; Moore, S.; Malhi, Y. Global atmospheric methane uptake by upland tree woody surfaces. Nature 2024, 631, 796–800. [Google Scholar] [CrossRef]
- Lewis, S.L.; Sonké, B.; Sunderland, T.; Begne, S.K.; Lopez-Gonzalez, G.; van der Heijden, G.M.F.; Phillips, O.L.; Affum-Baffoe, K.; Baker, T.R.; Banin, L.; et al. The role of Central African forests in regional climate regulation and global carbon cycling. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120300. [Google Scholar] [CrossRef]
- Baccini, A.; Walker, W.; Carvalho, L.; Farina, M.; Sulla-Menashe, D.; Houghton, R.A. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 2017, 358, 230–234. [Google Scholar] [CrossRef]
- Dimobe, K.; Kouakou, J.L.N.; Tondoh, J.E.; Zoungrana, B.J.-B.; Forkuor, G.; Ouédraogo, K. Predicting the potential impact of climate change on carbon stock in semi-arid West African savannas. Land 2018, 7, 124. [Google Scholar] [CrossRef]
- Ciais, P.; Bombelli, A.; Williams, M.; Piao, S.L.; Chave, J.; Ryan, C.M.; Henry, M.; Brender, P.; Valentini, R. The carbon balance of Africa: Synthesis of recent research studies. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 2038–2057. [Google Scholar] [CrossRef]
- Hubau, W.; Lewis, S.L.; Phillips, O.L.; Affum-Baffoe, K.; Beeckman, H.; Cuní-Sanchez, A.; Daniels, A.K.; Ewango, C.E.N.; Fauset, S.; Mukinzi, J.M.; et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 2020, 579, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Daigneault, A.; Baker, J.S.; Gu, Y.; Liu, Y.; McKeown, A. How the future of the global forest sink depends on timber demand, forest management, and carbon policies. Glob. Environ. Change 2022, 76, 102582. [Google Scholar] [CrossRef] [PubMed]
- Aishwarya, B.; Jyotish, P.B. Impact of forest governance and enforcement on deforestation and forest degradation at the district level: A study in West Bengal State, India. Reg. Sustain. 2023, 4, 441–452. [Google Scholar] [CrossRef]
- Poulsen, J.R.; Rosin, C.; Meier, A.; Mills, E.; Nuñez, C.L.; Koerner, S.E.; Blanchard, E.; Callejas, J.; Moore, S.; Sowers, M. Ecological consequences of forest elephant declines for Afrotropical forests. Conserv. Biol. 2017, 32, 559–567. [Google Scholar] [CrossRef]
- Tyukavina, A.; Hansen, M.C.; Potapov, P.V.; Stehman, S.V.; Smith-Rodriguez, K.; Okpa, C.; Aguilar, R. Congo Basin forest loss dominated by increasing smallholder clearing. Sci. Adv. 2018, 4, eaat2993. [Google Scholar] [CrossRef]
- Chen, W.X.; Gu, T.C.; Fang, C.L.; Zeng, J. Global urban low-carbon transitions: Multiscale relationship between urban land and carbon emissions. Environ. Impact Assess. Rev. 2023, 100, 107076. [Google Scholar] [CrossRef]
- Ge, J.M.; Lin, B.Q. Convergence or divergence? Unraveling the global development pattern of forest carbon sink. Environ. Impact Assess. Rev. 2024, 105, 107442. [Google Scholar] [CrossRef]
- Grieco, E.; Vangi, E.; Chiti, T.; Collalti, A. Impacts of deforestation and land use/land cover change on carbon stock dynamics in Jomoro District, Ghana. J. Environ. Manag. 2024, 367, 121993. [Google Scholar] [CrossRef]
- Walid, C. Assessment of vegetation cover changes and the contributing factors in the Al-Ahsa Oasis using Normalized Difference Vegetation Index (NDVI). Reg. Sustain. 2024, 5, 100111. [Google Scholar] [CrossRef]
- Zhao, Z.; Ciais, P.; Wigneron, J.-P.; Santoro, M.; Brandt, M.; Kleinschroth, F.; Lewis, S.L.; Chave, J.; Fensholt, R.; Laporte, N.; et al. Central African biomass carbon losses and gains during 2010–2019. One Earth 2024, 7, 506–519. [Google Scholar] [CrossRef]
- Bayramli, G.; Karimli, T. Driving factors of CO2 emissions in South American countries: An application of Seemingly Unrelated Regression model. Reg. Sustain. 2024, 5, 100182. [Google Scholar] [CrossRef]
- Besnard, S.; Koirala, S.; Santoro, M.; Weber, U.; Nelson, J.; Gütter, J.; Herault, B.; Kassi, J.; N’Guessan, A.; Neigh, C.; et al. Mapping global forest age from forest inventories, biomass and climate data. Earth Syst. Sci. Data 2021, 13, 4881–4896. [Google Scholar] [CrossRef]
- Liu, L.C.; Hu, X.T.; Li, L.X.; Sun, Z.X.; Zhang, Q. Understanding China’s agricultural non-carbon-dioxide greenhouse gas emissions: Subnational insights and global trade dynamics. Environ. Impact Assess. Rev. 2024, 106, 107487. [Google Scholar] [CrossRef]
- Smith, W.K.; Dannenberg, M.P.; Yan, D.; Herrmann, S.; Barnes, M.L.; Barron-Gafford, G.A.; Biederman, J.A.; Ferrenberg, S.; Fox, A.M.; Hudson, A.R.; et al. Remote sensing of dryland ecosystem structure and function: Progress, challenges, and opportunities. Remote Sens. Environ. 2019, 233, 111401. [Google Scholar] [CrossRef]
- Harris, N.L.; Gibbs, D.A.; Baccini, A.; Birdsey, R.A.; de Bruin, S.; Farina, M.; Fatoyinbo, L.; Hansen, M.C.; Herold, M.; Houghton, R.A.; et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 2021, 11, 234–240. [Google Scholar] [CrossRef]
- Rigatti, E.; McDermid, S.S.; Cook, B.I.; De Kauwe, M.G. The impact of drought on terrestrial carbon in the West African Sahel: Implications for natural climate solutions. J. Geophys. Res. Biogeosci. 2024, 129, e2024JG008143. [Google Scholar] [CrossRef]
- Valentini, R.; Arneth, A.; Bombelli, A.; Castaldi, S.; Gatti, R.C.; Chevallier, F.; Ciais, P.; Grieco, E.; Hartmann, J.; Henry, M.; et al. A full greenhouse gases budget of Africa: Synthesis, uncertainties, and vulnerabilities. Biogeosciences 2014, 11, 381–407. [Google Scholar] [CrossRef]
- Hall, J.; Sandor, M.E.; Harvey, B.J.; Parks, S.A.; Trugman, A.T.; Williams, A.P.; Hansen, W.D. Forest Carbon Storage in the Western United States: Distribution, Drivers, and Trends. Earth’s Future 2024, 12, e2023EF004399. [Google Scholar] [CrossRef]
- Mu, H.; Li, X.; Wen, Y.; Huang, J.; Du, P.; Su, W. An annual global terrestrial Human Footprint dataset from 2000 to 2018. Sci. Data 2021, 9, 176. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically Weighted Regression: A method for exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Ranjan, A.K.; Gorai, A.K. Assessment of global carbon dynamics due to mining-induced forest cover loss during 2000–2019 using satellite datasets. J. Environ. Manag. 2024, 371, 123271. [Google Scholar] [CrossRef]
- Mostefaoui, M.; Ciais, P.; McGrath, M.J.; Peylin, P.; Patra, P.K.; Ernst, Y. Greenhouse gas emissions and their trends over the last 3 decades across Africa. Earth Syst. Sci. Data 2024, 16, 245–275. [Google Scholar] [CrossRef]
- Ernst, Y.; Archibald, S.; Balzter, H.; Chevallier, F.; Ciais, P.; Fischer, C.G.; Gaubert, B.; Higginbottom, T.; Higgins, S.; Lawal, S.; et al. The African regional greenhouse gases budget (2010–2019). Glob. Biogeochem. Cycles 2024, 38, e2023GB008016. [Google Scholar] [CrossRef]
- Bond-Lamberty, B. New techniques and data for understanding the global soil respiration flux. Earth’s Future 2018, 6, 1176–1180. [Google Scholar] [CrossRef]
- Mitchard, E.T.A. The tropical forest carbon cycle and climate change. Nature 2018, 559, 527–534. [Google Scholar] [CrossRef]
- Chen, B.; Xu, X.; Wang, S.; Yang, T.; Liu, Z. Carbon dioxide fertilization enhanced carbon sink offset by climate change and land use in Amazonia on a centennial scale. Sci. Total Environ. 2024, 955, 176903. [Google Scholar] [CrossRef]
- Lawrence, D.; Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 2015, 5, 27–36. [Google Scholar] [CrossRef]
Country | Fire Area (km2) | Affected Carbon Area (km2) | Mean Fire Frac | Annual Emission (MtC) | Annual Removal (MtC) |
---|---|---|---|---|---|
Congo, Democratic Republic of the | 940,912.3 | 934,704.8 | 0.5466 | 18.0164 | 92.2315 |
Angola | 904,603.2 | 753,773 | 0.6275 | 6.9539 | 45.0181 |
Zambia | 610,765.6 | 512,719 | 0.5948 | 6.4639 | 20.1749 |
Mozambique | 587,616.1 | 533,244.9 | 0.5644 | 9.4241 | 22.3988 |
South Sudan | 555,296.1 | 328,643.2 | 0.7584 | 0.1458 | 27.1581 |
Central African Republic | 465,633 | 422,605.5 | 0.6185 | 0.4849 | 29.1352 |
Tanzania | 459,216.4 | 376,533.8 | 0.4679 | 5.3864 | 19.951 |
Nigeria | 427,690.7 | 192,965 | 0.3607 | 2.9092 | 21.671 |
Botswana | 374,426.7 | 5105.492 | 0.2806 | 0.0003 | 0.4789 |
Sudan | 321,524.1 | 42,689.39 | 0.4122 | 0.0166 | 4.4818 |
Chad | 316,271.7 | 71,286.62 | 0.5108 | 0.6245 | 4.7825 |
South Africa | 315,869.3 | 120,737.8 | 0.2286 | 4.9348 | 6.512 |
Mali | 249,196.9 | 77,881.61 | 0.4704 | 0.2165 | 8.2113 |
Madagascar | 241,693.4 | 184,100.2 | 0.308 | 7.2222 | 7.895 |
Namibia | 205,768.3 | 4238.829 | 0.3257 | 0.0244 | 0.2784 |
Guinea | 189,796.2 | 172,229.7 | 0.3929 | 4.6422 | 6.4092 |
Ethiopia | 168,281 | 126,705.4 | 0.5435 | 0.2218 | 10.7384 |
Cameroon | 166,420.3 | 126,836.4 | 0.3896 | 0.9535 | 9.2499 |
Ghana | 154,100.1 | 75,019.49 | 0.6471 | 0.6809 | 7.4128 |
Zimbabwe | 152,259.8 | 81,345.92 | 0.3711 | 0.8409 | 5.236 |
Côte d’Ivoire | 128,898.8 | 118,979 | 0.3313 | 1.4107 | 8.7812 |
Senegal | 114,103.8 | 25,217.2 | 0.6162 | 0.0146 | 2.7154 |
Burkina Faso | 112,592.6 | 42,222.4 | 0.3718 | 0.0039 | 4.8604 |
Congo | 103,093.6 | 92,458.38 | 0.5059 | 0.3225 | 12.6518 |
Uganda | 98,362.67 | 70,939 | 0.4804 | 0.1632 | 6.4849 |
Benin | 73,906.03 | 43,875.14 | 0.4232 | 0.5041 | 4.2038 |
Sierra Leone | 50,865.08 | 50,644.52 | 0.3106 | 2.2451 | 1.3674 |
Togo | 41,536.15 | 27,231.8 | 0.4367 | 0.2135 | 2.6126 |
Kenya | 36,244.12 | 10,292.41 | 0.146 | 0.1692 | 0.7658 |
Malawi | 29,629.41 | 26,113.97 | 0.3159 | 0.4042 | 1.2111 |
Mauritania | 26,327.52 | 1.9048 | 0.19 | 0 | 0.0001 |
Niger | 25,832.57 | 14,74.772 | 0.2084 | 0 | 0.1007 |
Guinea-Bissau | 19,257.88 | 17,101.3 | 0.4205 | 0.2596 | 1.3956 |
Algeria | 15,491.66 | 11,381.46 | 0.1175 | 0.1549 | 0.5599 |
Gabon | 14,586.8 | 12,028.11 | 0.4176 | 0.0207 | 1.7085 |
Liberia | 14,371 | 14,255.41 | 0.0995 | 1.179 | 0.1642 |
Gambia | 7351.488 | 4731.065 | 0.5267 | 0.0031 | 0.4412 |
Lesotho | 5806.155 | 706.9678 | 0.1617 | 0.0004 | 0.0417 |
Swaziland (Eswatini) | 5668.516 | 56,21.638 | 0.2437 | 0.5508 | 0.3016 |
Egypt | 4479.15 | 1949.846 | 0.1877 | 0.0006 | 0.0581 |
Somalia | 4054.975 | 677.2849 | 0.1074 | 0.0045 | 0.0191 |
Eritrea | 3254.457 | 161.3211 | 0.1795 | 0 | 0.0136 |
Burundi | 2504.623 | 2479.839 | 0.2714 | 0.0062 | 0.1841 |
Rwanda | 1720.608 | 1386.968 | 0.3444 | 0.0042 | 0.1451 |
Tunisia | 1374.646 | 648.0634 | 0.1 | 0.0094 | 0.031 |
Morocco | 1298.805 | 938.0389 | 0.0914 | 0.033 | 0.0317 |
Libya | 257.5423 | 48.3916 | 0.0847 | 0 | 0.0028 |
Comoros | 213.9589 | 164.3717 | 0.1102 | 0.0001 | 0.0042 |
Mauritius | 75.5261 | 69.0074 | 0.1008 | 0.0002 | 0.0013 |
Djibouti | 35.0358 | 0 | 0.088 | 0 | 0 |
Reunion | 29.6498 | 27.7955 | 0.0859 | 0.0001 | 0.0006 |
Equatorial Guinea | 8.933 | 8.933 | 0.0833 | 0.0001 | 0.0005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zhang, Z. Wildfires and Climate Change as Key Drivers of Forest Carbon Flux Variations in Africa over the Past Two Decades. Fire 2025, 8, 333. https://doi.org/10.3390/fire8080333
Zhang L, Zhang Z. Wildfires and Climate Change as Key Drivers of Forest Carbon Flux Variations in Africa over the Past Two Decades. Fire. 2025; 8(8):333. https://doi.org/10.3390/fire8080333
Chicago/Turabian StyleZhang, Lianglin, and Zhenke Zhang. 2025. "Wildfires and Climate Change as Key Drivers of Forest Carbon Flux Variations in Africa over the Past Two Decades" Fire 8, no. 8: 333. https://doi.org/10.3390/fire8080333
APA StyleZhang, L., & Zhang, Z. (2025). Wildfires and Climate Change as Key Drivers of Forest Carbon Flux Variations in Africa over the Past Two Decades. Fire, 8(8), 333. https://doi.org/10.3390/fire8080333