Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Actinosynnema pretiosum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2242 KiB  
Article
Global Regulator AdpA_1075 Regulates Morphological Differentiation and Ansamitocin Production in Actinosynnema pretiosum subsp. auranticum
by Siyu Guo, Tingting Leng, Xueyuan Sun, Jiawei Zheng, Ruihua Li, Jun Chen, Fengxian Hu, Feng Liu and Qiang Hua
Bioengineering 2022, 9(11), 719; https://doi.org/10.3390/bioengineering9110719 - 21 Nov 2022
Cited by 3 | Viewed by 2572
Abstract
Actinosynnema pretiosum is a well-known producer of maytansinoid antibiotic ansamitocin P-3 (AP-3). Growth of A. pretiosum in submerged culture was characterized by the formation of complex mycelial particles strongly affecting AP-3 production. However, the genetic determinants involved in mycelial morphology are poorly understood [...] Read more.
Actinosynnema pretiosum is a well-known producer of maytansinoid antibiotic ansamitocin P-3 (AP-3). Growth of A. pretiosum in submerged culture was characterized by the formation of complex mycelial particles strongly affecting AP-3 production. However, the genetic determinants involved in mycelial morphology are poorly understood in this genus. Herein a continuum of morphological types of a morphologically stable variant was observed during submerged cultures. Expression analysis revealed that the ssgA_6663 and ftsZ_5883 genes are involved in mycelial aggregation and entanglement. Combing morphology observation and morphology engineering, ssgA_6663 was identified to be responsible for the mycelial intertwining during liquid culture. However, down-regulation of ssgA_6663 transcription was caused by inactivation of adpA_1075, gene coding for an AdpA-like protein. Additionally, the overexpression of adpA_1075 led to an 85% increase in AP-3 production. Electrophoretic mobility shift assays (EMSA) revealed that AdpA_1075 may bind the promoter regions of asm28 gene in asm gene cluster as well as the promoter regions of ssgA_6663. These results confirm that adpA_1075 plays a positive role in AP-3 biosynthesis and morphological differentiation. Full article
Show Figures

Graphical abstract

18 pages, 2777 KiB  
Article
p-Aminophenylalanine Involved in the Biosynthesis of Antitumor Dnacin B1 for Quinone Moiety Formation
by Xiaojing Hu, Xing Li, Yong Sheng, Hengyu Wang, Xiaobin Li, Yixin Ou, Zixin Deng, Linquan Bai and Qianjin Kang
Molecules 2020, 25(18), 4186; https://doi.org/10.3390/molecules25184186 - 12 Sep 2020
Cited by 3 | Viewed by 3642
Abstract
Actinosynnema species produce diverse natural products with important biological activities, which represent an important resource of antibiotic discovery. Advances in genome sequencing and bioinformatics tools have accelerated the exploration of the biosynthetic gene clusters (BGCs) encoding natural products. Herein, the completed BGCs of [...] Read more.
Actinosynnema species produce diverse natural products with important biological activities, which represent an important resource of antibiotic discovery. Advances in genome sequencing and bioinformatics tools have accelerated the exploration of the biosynthetic gene clusters (BGCs) encoding natural products. Herein, the completed BGCs of dnacin B1 were first discovered in two Actinosynnema pretiosum subsp. auranticum strains DSM 44131T (hereafter abbreviated as strain DSM 44131T) and X47 by comparative genome mining strategy. The BGC for dnacin B1 contains 41 ORFs and spans a 66.9 kb DNA region in strain DSM 44131T. Its involvement in dnacin B1 biosynthesis was identified through the deletion of a 9.7 kb region. Based on the functional gene analysis, we proposed the biosynthetic pathway for dnacin B1. Moreover, p-amino-phenylalanine (PAPA) unit was found to be the dnacin B1 precursor for the quinone moiety formation, and this was confirmed by heterologous expression of dinV, dinE and dinF in Escherichia coli. Furthermore, nine potential PAPA aminotransferases (APAT) from the genome of strain DSM 44131T were explored and expressed. Biochemical evaluation of their amino group transformation ability was carried out with p-amino-phenylpyruvic acid (PAPP) or PAPA as the substrate for the final product formation. Two of those, APAT4 and APAT9, displayed intriguing aminotransferase ability for the formation of PAPA. The proposed dnacin B1 biosynthetic machinery and PAPA biosynthetic investigations not only enriched the knowledge of tetrahydroisoquinoline (THIQ) biosynthesis, but also provided PAPA building blocks to generate their structurally unique homologues. Full article
Show Figures

Graphical abstract

15 pages, 2265 KiB  
Article
Subtilisin-Involved Morphology Engineering for Improved Antibiotic Production in Actinomycetes
by Yuanting Wu, Qianjin Kang, Li-Li Zhang and Linquan Bai
Biomolecules 2020, 10(6), 851; https://doi.org/10.3390/biom10060851 - 3 Jun 2020
Cited by 18 | Viewed by 4085
Abstract
In the submerged cultivation of filamentous microbes, including actinomycetes, complex morphology is one of the critical process features for the production of secondary metabolites. Ansamitocin P-3 (AP-3), an antitumor agent, is a secondary metabolite produced by Actinosynnema pretiosum ATCC 31280. An excessive mycelial [...] Read more.
In the submerged cultivation of filamentous microbes, including actinomycetes, complex morphology is one of the critical process features for the production of secondary metabolites. Ansamitocin P-3 (AP-3), an antitumor agent, is a secondary metabolite produced by Actinosynnema pretiosum ATCC 31280. An excessive mycelial fragmentation of A. pretiosum ATCC 31280 was observed during the early stage of fermentation. Through comparative transcriptomic analysis, a subtilisin-like serine peptidase encoded gene APASM_4178 was identified to be responsible for the mycelial fragmentation. Mutant WYT-5 with the APASM_4178 deletion showed increased biomass and improved AP-3 yield by 43.65%. We also found that the expression of APASM_4178 is specifically regulated by an AdpA-like protein APASM_1021. Moreover, the mycelial fragmentation was alternatively alleviated by the overexpression of subtilisin inhibitor encoded genes, which also led to a 46.50 ± 0.79% yield increase of AP-3. Furthermore, APASM_4178 was overexpressed in salinomycin-producing Streptomyces albus BK 3-25 and validamycin-producing S. hygroscopicus TL01, which resulted in not only dispersed mycelia in both strains, but also a 33.80% yield improvement of salinomycin to 24.07 g/L and a 14.94% yield improvement of validamycin to 21.46 g/L. In conclusion, our work elucidates the involvement of a novel subtilisin-like serine peptidase in morphological differentiation, and modulation of its expression could be an effective strategy for morphology engineering and antibiotic yield improvement in actinomycetes. Full article
(This article belongs to the Special Issue Recent Advance of Actinomycetes)
Show Figures

Figure 1

14 pages, 3510 KiB  
Article
The Antitumor Agent Ansamitocin P-3 Binds to Cell Division Protein FtsZ in Actinosynnema pretiosum
by Xinran Wang, Rufan Wang, Qianjin Kang and Linquan Bai
Biomolecules 2020, 10(5), 699; https://doi.org/10.3390/biom10050699 - 30 Apr 2020
Cited by 9 | Viewed by 3612
Abstract
Ansamitocin P-3 (AP-3) is an important antitumor agent. The antitumor activity of AP-3 is a result of its affinity towards β-tubulin in eukaryotic cells. In this study, in order to improve AP-3 production, the reason for severe growth inhibition of the AP-3 producing [...] Read more.
Ansamitocin P-3 (AP-3) is an important antitumor agent. The antitumor activity of AP-3 is a result of its affinity towards β-tubulin in eukaryotic cells. In this study, in order to improve AP-3 production, the reason for severe growth inhibition of the AP-3 producing strain Actinosynnema pretiosum WXR-24 under high concentrations of exogenous AP-3 was investigated. The cell division protein FtsZ, which is the analogue of β-tubulin in bacteria, was discovered to be the AP-3 target through structural comparison followed by a SPR biosensor assay. AP-3 was trapped into a less hydrophilic groove near the GTPase pocket on FtsZ by hydrogen bounding and hydrophobic interactions, as revealed by docking analysis. After overexpression of the APASM_5716 gene coding for FtsZ in WXR-30, the resistance to AP-3 was significantly improved. Moreover, AP-3 yield was increased from 250.66 mg/L to 327.37 mg/L. After increasing the concentration of supplemented yeast extract, the final yield of AP-3 reached 371.16 mg/L. In summary, we demonstrate that the cell division protein FtsZ is newly identified as the bacterial target of AP-3, and improving resistance is an effective strategy to enhance AP-3 production. Full article
(This article belongs to the Special Issue Recent Advance of Actinomycetes)
Show Figures

Figure 1

11 pages, 1204 KiB  
Communication
Genome-Guided Discovery of Pretilactam from Actinosynnema pretiosum ATCC 31565
by Jing Wang, Xiaowen Hu, Guizhi Sun, Linli Li, Bingya Jiang, Shufen Li, Liping Bai, Hongyu Liu, Liyan Yu and Linzhuan Wu
Molecules 2019, 24(12), 2281; https://doi.org/10.3390/molecules24122281 - 19 Jun 2019
Cited by 12 | Viewed by 4034
Abstract
Actinosynnema is a small but well-known genus of actinomycetes for production of ansamitocin, the payload component of antibody-drug conjugates against cancers. However, the secondary metabolite production profile of Actinosynnema pretiosum ATCC 31565, the most famous producer of ansamitocin, has never been fully explored. [...] Read more.
Actinosynnema is a small but well-known genus of actinomycetes for production of ansamitocin, the payload component of antibody-drug conjugates against cancers. However, the secondary metabolite production profile of Actinosynnema pretiosum ATCC 31565, the most famous producer of ansamitocin, has never been fully explored. Our antiSMASH analysis of the genomic DNA of Actinosynnema pretiosum ATCC 31565 revealed a NRPS–PKS gene cluster for polyene macrolactam. The gene cluster is very similar to gene clusters for mirilactam and salinilactam, two 26-membered polyene macrolactams from Actinosynnema mirum and Salinispora tropica, respectively. Guided by this bioinformatics prediction, we characterized a novel 26-membered polyene macrolactam from Actinosynnema pretiosum ATCC 31565 and designated it pretilactam. The structure of pretilactam was elucidated by a comprehensive analysis of HRMS, 1D and 2D-NMR, with absolute configuration of chiral carbons predicted bioinformatically. Pretilactam features a dihydroxy tetrahydropyran moiety, and has a hexaene unit and a diene unit as its polyene system. A preliminary antibacterial assay indicated that pretilactam is inactive against Bacillus subtilis and Candida albicans. Full article
Show Figures

Graphical abstract

17 pages, 2939 KiB  
Article
Genome-Scale Metabolic Model of Actinosynnema pretiosum ATCC 31280 and Its Application for Ansamitocin P-3 Production Improvement
by Jian Li, Renliang Sun, Xinjuan Ning, Xinran Wang and Zhuo Wang
Genes 2018, 9(7), 364; https://doi.org/10.3390/genes9070364 - 20 Jul 2018
Cited by 12 | Viewed by 4524
Abstract
Actinosynnema pretiosum ATCC 31280 is the producer of antitumor agent ansamitocin P-3 (AP-3). Understanding of the AP-3 biosynthetic pathway and the whole metabolic network in A. pretiosum is important for the improvement of AP-3 titer. In this study, we reconstructed the first complete [...] Read more.
Actinosynnema pretiosum ATCC 31280 is the producer of antitumor agent ansamitocin P-3 (AP-3). Understanding of the AP-3 biosynthetic pathway and the whole metabolic network in A. pretiosum is important for the improvement of AP-3 titer. In this study, we reconstructed the first complete Genome-Scale Metabolic Model (GSMM) Aspm1282 for A. pretiosum ATCC 31280 based on the newly sequenced genome, with 87% reactions having definite functional annotation. The model has been validated by effectively predicting growth and the key genes for AP-3 biosynthesis. Then we built condition-specific models for an AP-3 high-yield mutant NXJ-24 by integrating Aspm1282 model with time-course transcriptome data. The changes of flux distribution reflect the metabolic shift from growth-related pathway to secondary metabolism pathway since the second day of cultivation. The AP-3 and methionine metabolisms were both enriched in active flux for the last two days, which uncovered the relationships among cell growth, activation of methionine metabolism, and the biosynthesis of AP-3. Furthermore, we identified four combinatorial gene modifications for overproducing AP-3 by in silico strain design, which improved the theoretical flux of AP-3 biosynthesis from 0.201 to 0.372 mmol/gDW/h. Upregulation of methionine metabolic pathway is a potential strategy to improve the production of AP-3. Full article
Show Figures

Figure 1

Back to TopTop