Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Achillea erba-rotta subsp. moschata

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1663 KiB  
Article
From Primary Data to Ethnopharmacological Investigations on Achillea erba-rotta subsp. moschata (Wulfen) I.Richardson as a Remedy against Gastric Ailments in Valmalenco (Italy)
by Martina Bottoni, Giulia Martinelli, Nicole Maranta, Emanuela Sabato, Fabrizia Milani, Lorenzo Colombo, Paola Sira Colombo, Stefano Piazza, Enrico Sangiovanni, Claudia Giuliani, Piero Bruschi, Giulio Vistoli, Mario Dell’Agli and Gelsomina Fico
Plants 2024, 13(4), 539; https://doi.org/10.3390/plants13040539 - 16 Feb 2024
Cited by 1 | Viewed by 1651
Abstract
(1) Background: Within the framework of the European Interreg Italy–Switzerland B-ICE & Heritage project (2018–2022), this study originated from a three-year ethnobotanical survey in Valmalenco (Sondrio, Italy). Following a preliminary work published by our group, this research further explored the folk therapeutic use [...] Read more.
(1) Background: Within the framework of the European Interreg Italy–Switzerland B-ICE & Heritage project (2018–2022), this study originated from a three-year ethnobotanical survey in Valmalenco (Sondrio, Italy). Following a preliminary work published by our group, this research further explored the folk therapeutic use of Achillea erba-rotta subsp. moschata (Wulfen) I.Richardson (Asteraceae) for dyspepsia disorders, specifically its anti-inflammatory potential at a gastrointestinal level. (2) Methods: Semi-structured interviews were performed. The bitter taste was investigated through molecular docking software (PLANTS, GOLD), while the anti-inflammatory activity of the hydroethanolic extract, infusion, and decoction was evaluated based on the release of IL-8 and IL-6 after treatment with TNFα or Helicobacter pylori. The minimum inhibitory concentration and bacterial adhesion on the gastric epithelium were evaluated. (3) Results: In total, 401 respondents were interviewed. Molecular docking highlighted di-caffeoylquinic acids as the main compounds responsible for the interaction with bitter taste receptors. The moderate inhibition of IL-6 and IL-8 release was recorded, while, in the co-culture with H. pylori, stronger anti-inflammatory potential was expressed (29–45 μg/mL). The concentration-dependent inhibition of H. pylori growth was recorded (MIC = 100 μg/mL), with a significant anti-adhesive effect. (4) Conclusions: Confirming the folk tradition, the study emphasizes the species’ potentiality for dyspepsia disorders. Future studies are needed to identify the components mostly responsible for the biological effects. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

9 pages, 2234 KiB  
Article
Non-Volatile Terpenoids and Lipophilic Flavonoids from Achillea erba-rotta Subsp. moschata (Wulfen) I. Richardson
by Stefano Salamone, Nicola Aiello, Pietro Fusani, Antonella Rosa, Mariella Nieddu, Giovanni Appendino and Federica Pollastro
Plants 2023, 12(2), 402; https://doi.org/10.3390/plants12020402 - 15 Jan 2023
Cited by 3 | Viewed by 2295
Abstract
Musk yarrow (Achillea erba-rotta subsp. moschata (Wulfen) I. Richardson) is endemic to the Central Alps, and is used to flavour alcoholic beverages. Despite its popularity as aromatizing agent and its alleged beneficial effects on digestion, the phytochemical profile of the plant is [...] Read more.
Musk yarrow (Achillea erba-rotta subsp. moschata (Wulfen) I. Richardson) is endemic to the Central Alps, and is used to flavour alcoholic beverages. Despite its popularity as aromatizing agent and its alleged beneficial effects on digestion, the phytochemical profile of the plant is still largely unknown and undiscovered. As a consequence, its authentication in aromatized products is impossible beyond sensory analysis allowing forgery. To address these issues, we phytochemically characterized a sample of musk yarrow from the Italian Eastern Alps, identifying, in addition to widespread phytochemicals (taraxasterol, apigenin), the guaianolides 3, 8, 9; the seco-caryophyllane 6; and the polymethoxylated lipophilic flavonoids 1, 4, and 5. The flavonoid xanthomicrol 1, a major constituent of the plant, was cytotoxic to HeLa cells, but only modestly affected primary 3T3 fibroblasts. On account of their stability, detectability by UV absorption, and concentration, the oxygenated flavonoids qualify as markers to validate the supply chain of the plant growers to consumers. Full article
Show Figures

Figure 1

18 pages, 3693 KiB  
Article
Xanthomicrol Activity in Cancer HeLa Cells: Comparison with Other Natural Methoxylated Flavones
by Mariella Nieddu, Federica Pollastro, Paola Caria, Stefano Salamone and Antonella Rosa
Molecules 2023, 28(2), 558; https://doi.org/10.3390/molecules28020558 - 5 Jan 2023
Cited by 6 | Viewed by 2537
Abstract
The methoxylated flavone xanthomicrol represents an uncommon active phenolic compound identified in herbs/plants with a long application in traditional medicine. It was isolated from a sample of Achillea erba-rotta subsp. moschata (musk yar-row) flowering tops. Xanthomicrol promising biological properties include antioxidant, anti-inflammatory, antimicrobial, [...] Read more.
The methoxylated flavone xanthomicrol represents an uncommon active phenolic compound identified in herbs/plants with a long application in traditional medicine. It was isolated from a sample of Achillea erba-rotta subsp. moschata (musk yar-row) flowering tops. Xanthomicrol promising biological properties include antioxidant, anti-inflammatory, antimicrobial, and anticancer activities. This study mainly focused on the evaluation of the xanthomicrol impact on lipid metabolism in cancer HeLa cells, together with the investigation of the treatment-induced changes in cell growth, morphology, and apoptosis. At the dose range of 5–100 μM, xanthomicrol (24 h of incubation) significantly reduced viability and modulated lipid profile in cancer Hela cells. It induced marked changes in the phospholipid/cholesterol ratio, significant decreases in the levels of oleic and palmitic acids, and a marked increase of stearic acid, involving an inhibitory effect on de novo lipogenesis and desaturation in cancer cells. Moreover, marked cell morphological alterations, signs of apoptosis, and cell cycle arrest at the G2/M phase were observed in cancer treated cells. The bioactivity profile of xanthomicrol was compared to that of the anticancer methoxylated flavones eupatilin and artemetin, and structure–activity relationships were underlined. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Graphical abstract

Back to TopTop