Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Abitibi Subprovince

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 70698 KiB  
Article
Oxygen Fugacity and Volatile Content of Syntectonic Magmatism in the Neoarchean Abitibi Greenstone Belt, Superior Province, Canada
by Baptiste Madon, Lucie Mathieu and Jeffrey H. Marsh
Minerals 2020, 10(11), 966; https://doi.org/10.3390/min10110966 - 28 Oct 2020
Cited by 10 | Viewed by 6369
Abstract
Neoarchean syntectonic intrusions from the Chibougamau area, northeastern Abitibi Subprovince (greenstone belt), may be genetically related to intrusion related gold mineralization. These magmatic-hydrothermal systems share common features with orogenic gold deposits, such as spatial and temporal association with syntectonic magmatism. Genetic association with [...] Read more.
Neoarchean syntectonic intrusions from the Chibougamau area, northeastern Abitibi Subprovince (greenstone belt), may be genetically related to intrusion related gold mineralization. These magmatic-hydrothermal systems share common features with orogenic gold deposits, such as spatial and temporal association with syntectonic magmatism. Genetic association with magmatism, however, remains controversial for many greenstone belt hosted Au deposits. To precisely identify the link between syntectonic magmas and gold mineralization in the Abitibi Subprovince, major and trace-element compositions of whole rock, zircon, apatite, and amphibole grains were measured for five intrusions in the Chibougamau area; the Anville, Saussure, Chevrillon, Opémisca, and Lac Line Plutons. The selected intrusions are representative of the chemical diversity of synvolcanic (TTG suite) and syntectonic (e.g., sanukitoid, alkaline intrusion) magmatism. Chemical data enable calculation of oxygen fugacity and volatile content, and these parameters were interpreted using data collected by electron microprobe and laser ablation-inductively coupled plasma-mass spectrometry. The zircon and apatite data and associated oxygen fugacity values in magma indicate that the youngest magmas are the most oxidized. Moreover, similar oxygen fugacity and high volatile content for both the Saussure Pluton and the mineralized Lac Line intrusion may indicate a possible prospective mineralized system associated with the syntectonic Saussure intrusion. Full article
(This article belongs to the Special Issue Distribution of Major- and Trace-Elements in Igneous Minerals)
Show Figures

Figure 1

17 pages, 4656 KiB  
Article
Tonalite-Dominated Magmatism in the Abitibi Subprovince, Canada, and Significance for Cu-Au Magmatic-Hydrothermal Systems
by Lucie Mathieu, Alexandre Crépon and Daniel J. Kontak
Minerals 2020, 10(3), 242; https://doi.org/10.3390/min10030242 - 7 Mar 2020
Cited by 23 | Viewed by 5208
Abstract
In Archean greenstone belts, magmatism is dominated by intrusive and volcanic rocks with tholeiitic affinities, as well as tonalite- and granodiorite-dominated large-volume batholiths, i.e., tonalite–trondhjemite–granodiorite (TTG) suites. These intrusions are associated with poorly documented mineralization (Cu-Au porphyries) that, in the Neoarchean Abitibi Subprovince [...] Read more.
In Archean greenstone belts, magmatism is dominated by intrusive and volcanic rocks with tholeiitic affinities, as well as tonalite- and granodiorite-dominated large-volume batholiths, i.e., tonalite–trondhjemite–granodiorite (TTG) suites. These intrusions are associated with poorly documented mineralization (Cu-Au porphyries) that, in the Neoarchean Abitibi Subprovince (>2.79 to ~2.65 Ga), Superior Province, Canada, are associated with diorite bearing plutons, i.e., tonalite–trondhjemite–diorite (TTD) suites. The importance of TTG versus TTD suites in the evolution of greenstone belts and of their magmatic-hydrothermal systems and related mineralization is unconstrained. The aim of this study was to portray the chemistry and distribution of these suites in the Abitibi Subprovince. The study used data compiled by the geological surveys of Québec and Ontario to evaluate the chemistry of TTG and TTD suites and uncovered two coeval magmas that significantly differentiated (fractional crystallization mostly): 1) a heavy rare earth elements (HREE)-depleted tonalitic magma from high pressure melting of an hydrated basalt source; and 2) a hybrid HREE-undepleted magma that may be a mixture of mantle-derived (tholeiite) and tonalitic melts. The HREE-depleted rocks (mostly tonalite and granodiorite) display chemical characteristics of TTG suites (HREE, Ti, Nb, Ta, Y, and Sr depletion, lack of mafic unit, Na-rich), while the other rocks (tonalite and diorite) formed TTD suites. Tonalite-dominated magmatism, in the Abitibi Subprovince, comprises crustal melts as well as a significant proportion of mantle-derived magmas and this may be essential for Cu-Au magmatic-hydrothermal mineralizing systems. Full article
(This article belongs to the Special Issue Magmatic–Hydrothermal Alteration and Mineralizing Processes)
Show Figures

Graphical abstract

Back to TopTop