error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = ASP oil displacement agent

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3558 KB  
Article
Preparation and Characterization of Responsive Cellulose-Based Gel Microspheres for Enhanced Oil Recovery
by Peng Yin, Fang Shi, Mingjian Luo, Jingchun Wu, Bo Zhao, Chunlong Zhang, Yi Shen and Yanbing Chen
Gels 2024, 10(8), 532; https://doi.org/10.3390/gels10080532 - 13 Aug 2024
Cited by 4 | Viewed by 2099
Abstract
As an important means to enhance oil recovery, ternary composite flooding (ASP flooding for short) technology has achieved remarkable results in Daqing Oilfield. Alkalis, surfactants and polymers are mixed in specific proportions and injected into the reservoir to give full play to the [...] Read more.
As an important means to enhance oil recovery, ternary composite flooding (ASP flooding for short) technology has achieved remarkable results in Daqing Oilfield. Alkalis, surfactants and polymers are mixed in specific proportions and injected into the reservoir to give full play to the synergistic effect of each component, which can effectively enhance the fluidity of crude oil and greatly improve the oil recovery. At present, the technology for further improving oil recovery after ternary composite flooding is not mature and belongs to the stage of technical exploration. The presence of alkaline substances significantly alters the reservoir’s physical properties and causes considerable corrosion to the equipment used in its development. This is detrimental to both the environment and production. Therefore, it is necessary to develop green displacement control agents. In the reservoir environment post-ASP flooding, 2-(methylamino)ethyl methacrylate and glycidyl methacrylate were chosen as monomers to synthesize a polymer responsive to alkali, and then grafted with cellulose nanocrystals to form microspheres of alkali-resistant swelling hydrogel. Cellulose nanocrystals (CNCs) modified with functional groups and other materials were utilized to fabricate hydrogel microspheres. The product’s structure was characterized and validated using Fourier transform infrared spectroscopy and X-ray diffraction. The infrared spectrum revealed characteristic absorption peaks of CNCs at 1165 cm−1, 1577 cm−1, 1746 cm−1, and 3342 cm−1. The diffraction spectrum corroborated the findings of the infrared analysis, indicating that the functional modification occurred on the CNC surface. After evaluating the swelling and erosion resistance of the hydrogel microspheres under various alkaline conditions, the optimal particle size for compatibility with the target reservoir was determined to be 6 μm. The potential of cellulose-based gel microspheres to enhance oil recovery was assessed through the evaluation of Zeta potential and laboratory physical simulations of oil displacement. The study revealed that the absolute value of the Zeta potential for gel microspheres exceeds 30 in an alkaline environment with pH values ranging from 7 to 14, exhibiting a phenomenon where stronger alkalinity correlates with a greater absolute value of Zeta potential. The dispersion stability spans from good to excellent. The laboratory oil displacement simulation experiment was conducted using a cellulose-based gel microsphere system following weak alkali ASP flooding within the pH value range from 7 to 10. The experimental interventions yielded recovery rates of 2.98%, 3.20%, 3.31%, and 3.38%, respectively. The study indicates that cellulose-based gel microspheres exhibit good adaptability in alkaline reservoirs. This research offers a theoretical foundation and experimental approaches to enhance oil recovery techniques post-ASP flooding. Full article
(This article belongs to the Special Issue Polymer Gels for the Oil and Gas Industry)
Show Figures

Figure 1

16 pages, 6198 KB  
Article
Preparation and Performance Evaluation of Amphiphilic Polymers for Enhanced Heavy Oil Recovery
by Dongtao Fei, Jixiang Guo, Ruiying Xiong, Xiaojun Zhang, Chuanhong Kang and Wyclif Kiyingi
Polymers 2023, 15(23), 4606; https://doi.org/10.3390/polym15234606 - 2 Dec 2023
Cited by 8 | Viewed by 3138
Abstract
The continuous growth in global energy and chemical raw material demand has drawn significant attention to the development of heavy oil resources. A primary challenge in heavy oil extraction lies in reducing crude oil viscosity. Alkali–surfactant–polymer (ASP) flooding technology has emerged as an [...] Read more.
The continuous growth in global energy and chemical raw material demand has drawn significant attention to the development of heavy oil resources. A primary challenge in heavy oil extraction lies in reducing crude oil viscosity. Alkali–surfactant–polymer (ASP) flooding technology has emerged as an effective method for enhancing heavy oil recovery. However, the chromatographic separation of chemical agents presents a formidable obstacle in heavy oil extraction. To address this challenge, we utilized a free radical polymerization method, employing acrylamide, 2-acrylamido-2-methylpropane sulfonic acid, lauryl acrylate, and benzyl acrylate as raw materials. This approach led to the synthesis of a multifunctional amphiphilic polymer known as PAALB, which we applied to the extraction of heavy oil. The structure of PAALB was meticulously characterized using techniques such as infrared spectroscopy and Nuclear Magnetic Resonance Spectroscopy. To assess the effectiveness of PAALB in reducing heavy oil viscosity and enhancing oil recovery, we conducted a series of tests, including contact angle measurements, interfacial tension assessments, self-emulsification experiments, critical association concentration tests, and sand-packed tube flooding experiments. The research findings indicate that PAALB can reduce oil–water displacement, reduce heavy oil viscosity, and improve swept volume upon injection into the formation. A solution of 5000 mg/L PAALB reduced the contact angle of water droplets on the core surface from 106.55° to 34.95°, shifting the core surface from oil-wet to water-wet, thereby enabling oil–water displacement. Moreover, A solution of 10,000 mg/L PAALB reduced the oil–water interfacial tension to 3.32 × 10−4 mN/m, reaching an ultra-low interfacial tension level, thereby inducing spontaneous emulsification of heavy oil within the formation. Under the condition of an oil–water ratio of 7:3, a solution of 10,000 mg/L PAALB can reduce the viscosity of heavy oil from 14,315 mPa·s to 201 mPa·s via the glass bottle inversion method, with a viscosity reduction rate of 98.60%. In sand-packed tube flooding experiments, under the injection volume of 1.5 PV, PAALB increased the recovery rate by 25.63% compared to traditional hydrolyzed polyacrylamide (HPAM) polymer. The insights derived from this research on amphiphilic polymers hold significant reference value for the development and optimization of chemical flooding strategies aimed at enhancing heavy oil recovery. Full article
(This article belongs to the Special Issue New Studies of Polymer Surfaces and Interfaces)
Show Figures

Figure 1

18 pages, 4581 KB  
Article
Experimental Study on Enhanced Oil Recovery of Adaptive System after Polymer Flooding
by Yanfu Pi, Xinyu Fan, Li Liu, Mingjia Zhao, Linxiao Jiang and Guoyu Cheng
Polymers 2023, 15(17), 3523; https://doi.org/10.3390/polym15173523 - 24 Aug 2023
Cited by 7 | Viewed by 2427
Abstract
After polymer flooding in Daqing Oilfield, the heterogeneity of the reservoir is enhanced, leading to the development of the dominant percolation channels, a significant issue with inefficient circulation, a substantial amount of displacement agents, and elevated cost. In order to further improve oil [...] Read more.
After polymer flooding in Daqing Oilfield, the heterogeneity of the reservoir is enhanced, leading to the development of the dominant percolation channels, a significant issue with inefficient circulation, a substantial amount of displacement agents, and elevated cost. In order to further improve oil recovery, an adaptive oil displacement system (ASP-PPG) was proposed by combining preformed particle gel (PPG) with an alkali-surfactant-polymer system (ASP). This comprehensive study aims to assess the effectiveness of the adaptive oil displacement system (ASP-PPG) in improving the recovery efficiency of heterogeneous reservoirs after polymer flooding. The evaluation encompasses various critical aspects, including static performance tests, flow experiments, microscopic experiments, profile control experiments, and flooding experiments conducted on a four-layer heterogeneous physical model. The experimental results show that the adaptive system has robust stability, enhanced mobility, effective plugging capability, and profile improvement capability. Notably, the system demonstrates the remarkable ability to successfully pass through the core and effectively block the large pores, resulting in an 18.4% recovery incremental after polymer flooding. This improvement is reflected in the reduced oil saturation values in the ultra-high permeability, high permeability, medium, and low permeability layers, which are 5.09%, 7.01%, 13.81%, and 15.45%, respectively. The adaptive system effectively recovered the remaining oil in the low and medium permeability layers, providing a promising approach for improving the recovery factors under challenging reservoir conditions. Full article
(This article belongs to the Special Issue Advanced Polymer Composites in Oil Industry)
Show Figures

Figure 1

20 pages, 2558 KB  
Article
Study on the Stability of Produced Water from Alkali/Surfactant/Polymer Flooding under the Synergetic Effect of Quartz Sand Particles and Oil Displacement Agents
by Bin Huang, Chen Wang, Weisen Zhang, Cheng Fu, Haibo Liu and Hongwei Wang
Processes 2020, 8(3), 315; https://doi.org/10.3390/pr8030315 - 9 Mar 2020
Cited by 12 | Viewed by 3542
Abstract
With the wide application of ASP (alkali/surfactant/polymer) flooding oil recovery technology, the produced water from ASP flooding has increased greatly. The clay particles carried by crude oil in the process of flow have a synergetic effect with oil displacement agents in the produced [...] Read more.
With the wide application of ASP (alkali/surfactant/polymer) flooding oil recovery technology, the produced water from ASP flooding has increased greatly. The clay particles carried by crude oil in the process of flow have a synergetic effect with oil displacement agents in the produced water, which increases the treatment difficulty of produced water. The stability of produced water is decided by the stability of oil droplets in the ASP-flooding-produced water system. The oil content, Zeta potential, interfacial tension and oil droplet size are important parameters to characterize the stability of produced water. In this paper, the changes of the oil content, Zeta potential, interfacial tension and oil droplet size of ASP flooding oily wastewater under the synergetic effect of different concentrations of quartz sand particles and oil displacement agents were studied by laboratory experiments. The experimental results show that the negatively charged quartz sand particles can absorb active substances in crude oil and surfactant molecules in the water phase and migrate to the oil–water interface, which increases the repulsion between quartz sand particles, decreasing the oil–water interfacial tension. Thus, the stability of oil droplets is enhanced, and the aggregation difficulty between oil droplets and quartz sand particles is increased. With the continually increasing quartz sand concentration, quartz sand particles combine with surfactant molecules adsorbed on the oil–water interface to form an aggregate. Meanwhile, the polymer molecules crimp from the stretching state, and the number of them surrounding the surface of the flocculation structure is close to saturation, which makes the oil droplets and quartz sand particles prone to aggregation, and the carried active substances desorb from the interface, resulting in the instability of the produced water system. The research on the synergetic effect between quartz sand particles and oil displacement agents is of great significance for deepening the treatment of ASP-produced water. Full article
Show Figures

Figure 1

Back to TopTop