Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = APRO family protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 866 KiB  
Review
Circular RNAs, Noncoding RNAs, and N6-methyladenosine Involved in the Development of MAFLD
by Moeka Nakashima, Naoko Suga, Yuka Ikeda, Sayuri Yoshikawa and Satoru Matsuda
Non-Coding RNA 2024, 10(1), 11; https://doi.org/10.3390/ncrna10010011 - 5 Feb 2024
Cited by 4 | Viewed by 3798
Abstract
Noncoding RNAs (ncRNAs), including circular RNAs (circRNAs) and N6-methyladenosine (m6A), have been shown to play a critical role in the development of various diseases including obesity and metabolic disorder-associated fatty liver disease (MAFLD). Obesity is a chronic disease caused by excessive fat accumulation [...] Read more.
Noncoding RNAs (ncRNAs), including circular RNAs (circRNAs) and N6-methyladenosine (m6A), have been shown to play a critical role in the development of various diseases including obesity and metabolic disorder-associated fatty liver disease (MAFLD). Obesity is a chronic disease caused by excessive fat accumulation in the body, which has recently become more prevalent and is the foremost risk factor for MAFLD. Causes of obesity may involve the interaction of genetic, behavioral, and social factors. m6A RNA methylation might add a novel inspiration for understanding the development of obesity and MAFLD with post-transcriptional regulation of gene expression. In particular, circRNAs, microRNAs (miRNAs), and m6A might be implicated in the progression of MAFLD. Interestingly, m6A modification can modulate the translation, degradation, and other functions of ncRNAs. miRNAs/circRNAs can also modulate m6A modifications by affecting writers, erasers, and readers. In turn, ncRNAs could modulate the expression of m6A regulators in different ways. However, there is limited evidence on how these ncRNAs and m6A interact to affect the promotion of liver diseases. It seems that m6A can occur in DNA, RNA, and proteins that may be associated with several biological properties. This study provides a mechanistic understanding of the association of m6A modification and ncRNAs with liver diseases, especially for MAFLD. Comprehension of the association between m6A modification and ncRNAs may contribute to the development of treatment tactics for MAFLD. Full article
(This article belongs to the Special Issue Non-coding RNAs: Multiple Players in Human Diseases)
Show Figures

Figure 1

13 pages, 716 KiB  
Review
Non-Coding RNAs and Gut Microbiota in the Pathogenesis of Cardiac Arrhythmias: The Latest Update
by Naoko Suga, Yuka Ikeda, Sayuri Yoshikawa, Kurumi Taniguchi, Haruka Sawamura and Satoru Matsuda
Genes 2023, 14(9), 1736; https://doi.org/10.3390/genes14091736 - 30 Aug 2023
Cited by 2 | Viewed by 2659
Abstract
Non-coding RNAs (ncRNAs) are indispensable for adjusting gene expression and genetic programming throughout development and for health as well as cardiovascular diseases. Cardiac arrhythmia is a frequent cardiovascular disease that has a complex pathology. Recent studies have shown that ncRNAs are also associated [...] Read more.
Non-coding RNAs (ncRNAs) are indispensable for adjusting gene expression and genetic programming throughout development and for health as well as cardiovascular diseases. Cardiac arrhythmia is a frequent cardiovascular disease that has a complex pathology. Recent studies have shown that ncRNAs are also associated with cardiac arrhythmias. Many non-coding RNAs and/or genomes have been reported as genetic background for cardiac arrhythmias. In general, arrhythmias may be affected by several functional and structural changes in the myocardium of the heart. Therefore, ncRNAs might be indispensable regulators of gene expression in cardiomyocytes, which could play a dynamic role in regulating the stability of cardiac conduction and/or in the remodeling process. Although it remains almost unclear how ncRNAs regulate the expression of molecules for controlling cardiac conduction and/or the remodeling process, the gut microbiota and immune system within the intricate networks might be involved in the regulatory mechanisms. This study would discuss them and provide a research basis for ncRNA modulation, which might support the development of emerging innovative therapies against cardiac arrhythmias. Full article
(This article belongs to the Special Issue Genetics of Human Cardiovascular Disease)
Show Figures

Figure 1

14 pages, 954 KiB  
Review
CircRNAs and RNA-Binding Proteins Involved in the Pathogenesis of Cancers or Central Nervous System Disorders
by Yuka Ikeda, Sae Morikawa, Moeka Nakashima, Sayuri Yoshikawa, Kurumi Taniguchi, Haruka Sawamura, Naoko Suga, Ai Tsuji and Satoru Matsuda
Non-Coding RNA 2023, 9(2), 23; https://doi.org/10.3390/ncrna9020023 - 31 Mar 2023
Cited by 31 | Viewed by 4248
Abstract
Circular RNAs (circRNAs), a newly recognized group of noncoding RNA transcripts, have established widespread attention due to their regulatory role in cell signaling. They are covalently closed noncoding RNAs that form a loop, and are typically generated during the splicing of precursor RNAs. [...] Read more.
Circular RNAs (circRNAs), a newly recognized group of noncoding RNA transcripts, have established widespread attention due to their regulatory role in cell signaling. They are covalently closed noncoding RNAs that form a loop, and are typically generated during the splicing of precursor RNAs. CircRNAs are key post-transcriptional and post-translational regulators of gene expression programs that might influence cellular response and/or function. In particular, circRNAs have been considered to function as sponges of specific miRNA, regulating cellular processes at the post-transcription stage. Accumulating evidence has shown that the aberrant expression of circRNAs could play a key role in the pathogenesis of several diseases. Notably, circRNAs, microRNAs, and several RNA-binding proteins, including the antiproliferative (APRO) family proteins, could be indispensable gene modulators, which might be strongly linked to the occurrence of diseases. In addition, circRNAs have attracted general interest for their stability, abundance in the brain, and their capability to cross the blood–brain barrier. Here, we present the current findings and theragnostic potentials of circRNAs in several diseases. With this, we aim to provide new insights to support the development of novel diagnostic and/or therapeutic strategies for these diseases. Full article
(This article belongs to the Special Issue ncRNAs to Target Molecular Pathways)
Show Figures

Figure 1

12 pages, 1089 KiB  
Perspective
Presumed Roles of APRO Family Proteins in Cancer Invasiveness
by Yuka Ikeda, Kurumi Taniguchi, Haruka Sawamura, Sayuri Yoshikawa, Ai Tsuji and Satoru Matsuda
Cancers 2022, 14(19), 4931; https://doi.org/10.3390/cancers14194931 - 8 Oct 2022
Cited by 5 | Viewed by 2859
Abstract
The APRO family members may be involved in the regulation of cell growth, migration, and/or invasion. Although an APRO protein could suppress the invasiveness of several cancer cells, it has been reported that overexpression of the same APRO protein could also promote the [...] Read more.
The APRO family members may be involved in the regulation of cell growth, migration, and/or invasion. Although an APRO protein could suppress the invasiveness of several cancer cells, it has been reported that overexpression of the same APRO protein could also promote the invasiveness and/or metastasis of the same cancer cells. In general, the invasiveness of cancer cells might be associated with the function of matrix metalloproteinases (MMPs) as well as with the function of certain exosomes. However, it has been shown that exosomes involving particular APRO proteins, MMPs, and/or microRNA could contribute to the regulation of invasiveness. Here, we discuss contradictory reports on invasiveness in relation to APRO family proteins on the basis of understanding the function of MMPs and/or various exosomes. A better understanding of those mechanisms could be of use to bring about innovative strategies for cancer treatment. Full article
(This article belongs to the Special Issue Targeting Mechanisms of Protein Degradation for Cancer Therapy)
Show Figures

Figure 1

Back to TopTop