Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = 90° rectangular elbow

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1972 KB  
Article
Pull-Out Capability of a 3D Printed Threadless Suture Anchor with Rectangular Cross-Section: A Biomechanical Study
by Yueh-Ying Hsieh, Lien-Chen Wu, Fon-Yih Tsuang, Chia-Hsien Chen and Chang-Jung Chiang
Appl. Sci. 2021, 11(24), 12128; https://doi.org/10.3390/app112412128 - 20 Dec 2021
Cited by 7 | Viewed by 3907
Abstract
Suture anchor fixation is a common method for securing bone and soft tissue in the body, with proven applications in the hip, elbow, hand, knee and foot. A critical limiting factor of suture anchors is the pull-out strength, particularly in suboptimal bone. This [...] Read more.
Suture anchor fixation is a common method for securing bone and soft tissue in the body, with proven applications in the hip, elbow, hand, knee and foot. A critical limiting factor of suture anchors is the pull-out strength, particularly in suboptimal bone. This study introduces a novel 3D printed threadless suture anchor with a rectangular cross-section. The titanium anchor was designed with surface fenestration and a porous central core to improve bone ingrowth. The aim of this study was to compare the pull-out properties of the novel threadless anchor with a traditional circular threaded suture anchor. The anchors were inserted into a 0.24 g/cm3 synthetic cancellous bone block at angles of 90° and 135° to the surface. The sutures were pulled at 180° (parallel) to the surface under a static pull test (anchor pullout) and cyclic load test using a tensile testing machine. Under the static load, the greatest pullout strength was seen with the novel threadless anchor inserted at 90° (mean, 105.6 N; standard deviation [SD], 3.5 N). The weakest pullout strength was seen with the threaded anchor inserted at 90° (mean, 87.9 N; SD, 4.1 N). In the cyclic load test, all six of the threaded anchors with a 90° insertion angle pulled out after 18 cycles (70 N). All of the threadless anchors inserted at 90° survived the cyclic test (90 N). In conclusion, the novel threadless suture anchor with rectangular cross-section and traditional threaded suture anchor had similar pullout survivorship when inserted at either 90° or 135°. In addition, the 3D printed threadless anchor has the potential for good bone integration to improve long-term stabilization. Full article
(This article belongs to the Special Issue Fracture, Fatigue and Creep of Advanced Materials)
Show Figures

Figure 1

17 pages, 3710 KB  
Article
Computational Analysis of Water-Submerged Jet Erosion
by Rached Ben-Mansour, Hassan M. Badr, Abdulrazaq A. Araoye and Ihsan Ul Haq Toor
Energies 2021, 14(11), 3074; https://doi.org/10.3390/en14113074 - 25 May 2021
Cited by 10 | Viewed by 3786
Abstract
Erosion causes substantial damage in many industrial equipment such as pump components, valves, elbows, and plugged tees. In most cases, erosion is coupled with corrosion, resulting in major financial loss (nearly 3.4% of the global gross domestic product) as evidenced in oil and [...] Read more.
Erosion causes substantial damage in many industrial equipment such as pump components, valves, elbows, and plugged tees. In most cases, erosion is coupled with corrosion, resulting in major financial loss (nearly 3.4% of the global gross domestic product) as evidenced in oil and gas industries. In most cases, the erosion occurs in a submerged water medium. In this paper, erosion characteristics of stainless steel 316 were investigated computationally in a water-submerged jet impingement setup. The erosion profiles and patterns were obtained for various parameters over ranges of inlet velocities (3 to 16 m/s), nozzle diameters (5 to 10 mm), nozzle–target distances (5 to 20 mm), nozzle shapes (circular, elliptical, square, and rectangular), impingement angles (60° to 90°), and particle sizes (50 to 300 µm). The range of Reynolds number studied based on nozzle diameters is 21,000–120,000. The Eulerian–Lagrangian approach was used for flow field prediction and particle tracking considering one-way coupling for the particle–fluid interaction. The Finnie erosion model was implemented in ANSYS-Fluent 19.2 and used for erosion prediction. The computational model was validated against experimental data and the distributions of the erosion depth as well as the locations of the of maximum and minimum erosion points are well matched. As expected, the results indicate an increase in loss of material thickness with increasing jet velocity. Increasing the nozzle diameter caused a reduction in the maximum depth of eroded material due to decreasing the particle impact density. At a fixed fluid inlet velocity, the maximum thickness loss increases as the separation distance between the nozzle outlet and target increases, aspect ratio of nozzle shape decreases, and impingement angle increases. The erosion patterns showed that the region of substantial thickness loss increases as nozzle size/stand-off height increases and as particle size decreases. In addition, increasing the aspect ratio and impingement angle creates skewed erosion patterns. Full article
Show Figures

Figure 1

21 pages, 6995 KB  
Article
Evaluation of Joint Motion Sensing Efficiency According to the Implementation Method of SWCNT-Coated Fabric Motion Sensor
by Hyun-Seung Cho, Jin-Hee Yang, Jeong-Hwan Lee and Joo-Hyeon Lee
Sensors 2020, 20(1), 284; https://doi.org/10.3390/s20010284 - 3 Jan 2020
Cited by 16 | Viewed by 3867
Abstract
The purpose of this study was to investigate the effects of the shape and attachment position of stretchable textile piezoresistive sensors coated with single-walled carbon nanotubes on their performance in measuring the joint movements of children. The requirements for fabric motion sensors suitable [...] Read more.
The purpose of this study was to investigate the effects of the shape and attachment position of stretchable textile piezoresistive sensors coated with single-walled carbon nanotubes on their performance in measuring the joint movements of children. The requirements for fabric motion sensors suitable for children are also identified. The child subjects were instructed to wear integrated clothing with sensors of different shapes (rectangular and boat-shaped), attachment positions (at the knee and elbow joints or 4 cm below the joints). The change in voltage caused by the elongation and contraction of the fabric sensors was measured for the flexion-extension motions of the arms and legs at 60°/s (three measurements of 10 repetitions each for the 60° and 90° angles, for a total of 60 repetitions). Their reliability was verified by analyzing the agreement between the fabric motion sensors and attached acceleration sensors. The experimental results showed that the fabric motion sensor that can measure children’s arm and leg motions most effectively is the rectangular-shaped sensor attached 4 cm below the joint. In this study, we developed a textile piezoresistive sensor suitable for measuring the joint motion of children, and analyzed the shape and attachment position of the sensor on clothing suitable for motion sensing. We showed that it is possible to sense joint motions of the human body by using flexible fabric sensors integrated into clothing. Full article
(This article belongs to the Special Issue Wearable Electronic Sensors)
Show Figures

Figure 1

12 pages, 4209 KB  
Article
Study on Flow Field Characteristics of the 90° Rectangular Elbow in the Exhaust Hood of a Uniform Push–Pull Ventilation Device
by Xiang Wu, Lindong Liu, Xiaowei Luo, Jianwu Chen and Jingwen Dai
Int. J. Environ. Res. Public Health 2018, 15(12), 2884; https://doi.org/10.3390/ijerph15122884 - 16 Dec 2018
Cited by 16 | Viewed by 4716
Abstract
A uniform push–pull ventilation device can effectively improve indoor air quality (IAQ). The 90° rectangular elbow is an important part of the push–pull ventilation device. This paper analyzes the flow field characteristics of the 90° rectangular elbows under different working conditions. This was [...] Read more.
A uniform push–pull ventilation device can effectively improve indoor air quality (IAQ). The 90° rectangular elbow is an important part of the push–pull ventilation device. This paper analyzes the flow field characteristics of the 90° rectangular elbows under different working conditions. This was done by using computational fluid dynamics (CFD) simulation (Fluent). The flow lines, velocity and pressure distribution patterns of the elbow flow field are revealed in detail. The wind velocity non-uniformity and wind pressure non-uniformity of the 90° rectangular elbows with different coefficients of radius curvature R and rectangular section height h are also compared. The results show that when R ≥ 2.5 h, the wind flow traces inside the elbow are basically parallel lines. At the same time, the average wind velocity and the average wind pressure are stable. Also, the wind velocity non-uniformity and wind pressure non-uniformity decrease with the increase of R. Therefore, considering the space and material loss caused by an increase in radius of curvature, the elbow with R = 2.5 h can be used as the best design structure for the 90° rectangular elbow, which is of great significance for improving the control effect of dust and toxic pollutants in a uniform push–pull ventilation device. Full article
(This article belongs to the Section Environmental Science and Engineering)
Show Figures

Figure 1

Back to TopTop