Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = 6-Hz corneal stimulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3324 KB  
Article
Influence of Umbelliferone on the Anticonvulsant and Neuroprotective Activity of Selected Antiepileptic Drugs: An In Vivo and In Vitro Study
by Mirosław Zagaja, Anna Zagaja, Joanna Szala-Rycaj, Aleksandra Szewczyk, Marta Kinga Lemieszek, Grzegorz Raszewski and Marta Andres-Mach
Int. J. Mol. Sci. 2022, 23(7), 3492; https://doi.org/10.3390/ijms23073492 - 23 Mar 2022
Cited by 13 | Viewed by 3777
Abstract
Umbelliferone (7-hydroxycoumarin; UMB) is a coumarin with many biological properties, including antiepileptic activity. This study evaluated the effect of UMB on the ability of classical and novel antiepileptic drugs (e.g., lacosamide (LCM), levetiracetam (LEV), phenobarbital (PB) and valproate (VPA)) to prevent seizures evoked [...] Read more.
Umbelliferone (7-hydroxycoumarin; UMB) is a coumarin with many biological properties, including antiepileptic activity. This study evaluated the effect of UMB on the ability of classical and novel antiepileptic drugs (e.g., lacosamide (LCM), levetiracetam (LEV), phenobarbital (PB) and valproate (VPA)) to prevent seizures evoked by the 6-Hz corneal-stimulation-induced seizure model. The study also evaluated the influence of this coumarin on the neuroprotective properties of these drugs in two in vitro models of neurodegeneration, including trophic stress and excitotoxicity. The results indicate that UMB (100 mg/kg, i.p.) significantly enhanced the anticonvulsant action of PB (p < 0.01) and VPA (p < 0.05), but not that of LCM orLEV, in the 6-Hz test. Whether alone or in combination with other anticonvulsant drugs (at their ED50 values from the 6-Hz test), UMB (100 mg/kg) did not affect motor coordination; skeletal muscular strength and long-term memory, as determined in the chimney; grip strength; or passive avoidance tests, respectively. Pharmacokinetic characterization revealed that UMB had no impact on total brain concentrations of PB or VPA in mice. The in vitro study indicated that UMB has neuroprotective properties. Administration of UMB (1 µg/mL), together with antiepileptic drugs, mitigated their negative impact on neuronal viability. Under trophic stress (serum deprivation) conditions, UMB enhanced the neurotrophic abilities of all the drugs used. Moreover, this coumarin statistically enhanced the neuroprotective effects of PB (p < 0.05) and VPA (p < 0.001) in the excitotoxicity model of neurodegeneration. The obtained results clearly indicate a positive effect of UMB on the anticonvulsant and neuroprotective properties of the selected drugs. Full article
(This article belongs to the Special Issue Advances in Epilepsy and Antiepileptic Drugs)
Show Figures

Figure 1

19 pages, 6582 KB  
Article
Antiseizure Effects of Fully Characterized Non-Psychoactive Cannabis sativa L. Extracts in the Repeated 6-Hz Corneal Stimulation Test
by Anna-Maria Costa, Lara Senn, Lisa Anceschi, Virginia Brighenti, Federica Pellati and Giuseppe Biagini
Pharmaceuticals 2021, 14(12), 1259; https://doi.org/10.3390/ph14121259 - 3 Dec 2021
Cited by 17 | Viewed by 5261
Abstract
Compounds present in Cannabis sativa L. preparations have recently attracted much attention in the treatment of drug-resistant epilepsy. Here, we screened two olive oil extracts from a non-psychoactive C. sativa variety, fully characterized by high-performance liquid chromatography and gas chromatography. Particularly, hemp oils [...] Read more.
Compounds present in Cannabis sativa L. preparations have recently attracted much attention in the treatment of drug-resistant epilepsy. Here, we screened two olive oil extracts from a non-psychoactive C. sativa variety, fully characterized by high-performance liquid chromatography and gas chromatography. Particularly, hemp oils with different concentrations of terpenes were administered at the same dose of cannabidiol (25 mg/kg/day orally), 1 h before the 6-Hz corneal stimulation test (44 mA). Mice were stimulated once a day for 5 days and evaluated by video-electrocorticographic recordings and behavioral analysis. Neuronal activation was assessed by FosB/ΔFosB immunoreactivity. Both oils significantly reduced the percentage of mice experiencing convulsive seizures in comparison to olive oil-treated mice (p < 0.050; Fisher’s exact test), but only the oil enriched with terpenes (K2) significantly accelerated full recovery from the seizure. These effects occurred in the presence of reduced power of delta rhythm, and, instead, increased power of theta rhythm, along with a lower FosB/ΔFosB expression in the subiculum (p < 0.050; Duncan’s method). The overall findings suggest that both cannabinoids and terpenes in oil extracts should be considered as potential therapeutic agents against epileptic seizures and epilepsy. Full article
Show Figures

Graphical abstract

15 pages, 9649 KB  
Article
Electrographic Changes Accompanying Recurrent Seizures under Ketogenic Diet Treatment
by Chiara Lucchi, Maddalena Marchiò, Elisa Caramaschi, Carmela Giordano, Rocco Giordano, Azzurra Guerra and Giuseppe Biagini
Pharmaceuticals 2017, 10(4), 82; https://doi.org/10.3390/ph10040082 - 20 Oct 2017
Cited by 12 | Viewed by 7564
Abstract
The ketogenic diet (KD) is increasingly used to treat epilepsy refractory to antiepileptic drugs and other neurological disorders. In animal models, the KD was found to increase the threshold to seizures induced by different convulsive stimulations. However, in models in which suprathreshold stimuli [...] Read more.
The ketogenic diet (KD) is increasingly used to treat epilepsy refractory to antiepileptic drugs and other neurological disorders. In animal models, the KD was found to increase the threshold to seizures induced by different convulsive stimulations. However, in models in which suprathreshold stimuli were used, a paradoxical seizure worsening was consistently observed in KD-fed animals. To better define this phenomenon, we characterized the electrographic response to seizures induced in mice which were treated with the KD, and then corneally stimulated at 6-Hz in four different sessions. We also evaluated the electroencephalogram (EEG) in three patients in which the KD was associated with a paradoxical worsening of epileptic seizures. Although seizures were initially less severe, a remarkable prolongation of the electrographic response was observed in mice receiving the KD from the second session of 6-Hz corneal stimulation and onwards. The EEG was also markedly altered in the presence of progressive seizure aggravation observed in children treated with the KD, specifically one affected by Lennox–Gastaut syndrome and two by type I lissencephaly. These results suggest that when seizures are induced or recur because of resistance to therapeutic interventions, the KD may change the EEG by potentiating the electrographic epileptic activity. Full article
(This article belongs to the Special Issue Epilepsy and Neurodegeneration: Current Therapeutic Implications)
Show Figures

Figure 1

Back to TopTop