Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = 4-propylcyclohexanone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8789 KB  
Hypothesis
Treatment of Substandard Rocket Fuel 1,1-Dimethylhydrazine via Its Methylene Derivative into Heterocycles Based on Pyrrolo-[3,4c]Quinolines, Cyclododeca[b]piran and Pyrrole
by Elizaveta Ivanova, Maxim Maryasov, Vera Andreeva, Margarita Osipova, Tatyana Vasilieva, Alexey Eremkin, Olga Lodochnikova, Denis Grishaev and Oleg E. Nasakin
Int. J. Mol. Sci. 2023, 24(17), 13076; https://doi.org/10.3390/ijms241713076 - 22 Aug 2023
Viewed by 2201
Abstract
1,1-Dimethylhydrazine (Heptil, rocket fuel (UDMH)) is characterized by extremely high toxicity, teratogenicity and the ability to constantly absorb water from the atmosphere, losing its energy characteristics. In this regard, as well as due to the alternative fuel (“Angara”) transition, there is a need [...] Read more.
1,1-Dimethylhydrazine (Heptil, rocket fuel (UDMH)) is characterized by extremely high toxicity, teratogenicity and the ability to constantly absorb water from the atmosphere, losing its energy characteristics. In this regard, as well as due to the alternative fuel (“Angara”) transition, there is a need for UDMH utilization in huge amounts. A more benign approach involves its immediate reaction with a formalin solution to form 1,1–dimethyl-2-methylene hydrazone (MDH), which is significantly less toxic by an order of magnitude. MDH can then be polymerized under acidic conditions, and the resulting product can be burned, yielding a substantial amount of nitrogen oxides. We propose an alternative to incineration by involving MDH in organic synthesis. We studied the reactions of MDH and its analog N,N-dimethyl-2-(methylenamino)ethane-1-amine (MDEA) with available CH-acids: tetracyanoethylated ketones (TCEKs) based on cyclohexanone, 4-propylcyclohexanone, 2-methylcyclohexanone, cyclododecanone and tetracyanoethane. The structures synthesized were confirmed by IR, 1H, 13C NMR and mass spectroscopy methods. MDH-based adducts were also identified by X-ray structural analysis. TCEKs and MDH, as well as TCEK based on cyclohexanone and MDEA, form bi- and tricyclic structures: pyrrolo [3,4c]-quinolines (using TCEKs based on cyclohexanone and 4-propylcyclohexanone), epiminomethanoquinoline-3,4-dicarbonitrile (using TCEK based on 2-methylcyclohexanone) and cyclododec[b]pyran-3,4-dicarbonitrile (using TCEK based on cyclododecanone). MDH and TCNEH2 formed a pyrrole derivative. Thus, we synthesized the structures that are of interest for molecular design and pharmaceutical chemistry. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Graphical abstract

11 pages, 2804 KB  
Article
Efficient Synthesis of cis-4-Propylcyclohexanol Using a Mutant Alcohol Dehydrogenase Coupled with Glucose Dehydrogenase
by Licheng Wu, Zhiwei Wang, Xiaolei Guo, Pengfu Liu, Ziduo Liu and Gaobing Wu
Catalysts 2022, 12(4), 406; https://doi.org/10.3390/catal12040406 - 6 Apr 2022
Cited by 3 | Viewed by 3109
Abstract
cis-4-Propylcyclohexanol is an important intermediate for synthesizing trans-2-(4-propylcyclohexyl)-1,3-propanediol, which is widely used in the manufacture of liquid crystal displays. In this study, cis-4-propylcyclohexanol was prepared using a mutant alcohol dehydrogenase from Lactobacillus kefir (LK-TADH, A94T/F147L/L199H/A202L) coupled with glucose dehydrogenase. Using [...] Read more.
cis-4-Propylcyclohexanol is an important intermediate for synthesizing trans-2-(4-propylcyclohexyl)-1,3-propanediol, which is widely used in the manufacture of liquid crystal displays. In this study, cis-4-propylcyclohexanol was prepared using a mutant alcohol dehydrogenase from Lactobacillus kefir (LK-TADH, A94T/F147L/L199H/A202L) coupled with glucose dehydrogenase. Using the optimal catalytic conditions, 125 g/L (250 g) of 4-propylcyclohexanone was completely transformed after 5 h, and 225.8 g of cis-4-propylcyclohexanol (cis/trans ratio of 99.5:0.5) was obtained through extraction and rotary evaporation at a yield of 90.32%. This study reports a potential method for the green production of cis-4-propylcyclohexanol as the key intermediate of trans-2-(4-propylcyclohexyl)-1,3-propanediol at an industrial level. Full article
(This article belongs to the Topic Advances in Enzymes and Protein Engineering)
Show Figures

Figure 1

Back to TopTop