Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = 4-Oxo-n-alkanals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4735 KiB  
Article
Comparative 1H NMR-Based Chemometric Evaluations of the Time-Dependent Generation of Aldehydic Lipid Oxidation Products in Culinary Oils Exposed to Laboratory-Simulated Shallow Frying Episodes: Differential Patterns Observed for Omega-3 Fatty Acid-Containing Soybean Oils
by Angela I. Wann, Benita C. Percival, Katy Woodason, Miles Gibson, Siâny Vincent and Martin Grootveld
Foods 2021, 10(10), 2481; https://doi.org/10.3390/foods10102481 - 17 Oct 2021
Cited by 22 | Viewed by 4054
Abstract
Soybean oil is the second most exported oil from the United States and South America, and is widely marketed as a cooking oil product containing numerous health benefits for human consumers. However, culinary oils with high polyunsaturated fatty acid (PUFA) contents, are known [...] Read more.
Soybean oil is the second most exported oil from the United States and South America, and is widely marketed as a cooking oil product containing numerous health benefits for human consumers. However, culinary oils with high polyunsaturated fatty acid (PUFA) contents, are known to produce high quantities of lipid oxidation products (LOPs), including toxic aldehydes upon exposure to high-temperature frying episodes. Previous studies have demonstrated causal links between aldehyde ingestion and inhalation with deleterious health perturbations, including mutagenic and carcinogenic effects, along with cardiovascular and teratogenic actions. In this study, aldehydic LOPs were detected and quantified in commercially available samples of soybean, avocado, corn and extra-virgin olive oil products before and after their exposure to laboratory-simulated laboratory frying episodes (LSSFEs) using high-resolution 1H nuclear magnetic resonance (NMR) analysis. Results acquired demonstrated that PUFA-rich soybean and corn oils gave rise to the highest concentrations of oil aldehydes from the thermo-oxidation of unsaturated fatty acids, whereas monounsaturated fatty acid (MUFA)-laden avocado and olive oils were much more resistant to this peroxidation process, as expected. Multivariate chemometrics analyses provided evidence that an orthogonal component pattern of aldehydic LOPs featuring low-molecular-mass n-alkanals such as propanal, and 4-oxo-alkanals, arises from thermo-oxidation of the ω-3 fatty acid (FA) linolenic acid (present in soybean oils at levels of ca. 7% (w/w)), was able to at least partially distinguish this oil from corresponding samples of thermally-stressed corn oil. Despite having a similar total PUFA level, corn oil has only a negligible ω-3 FA content, and therefore generated significantly lower levels of these two aldehyde classes. In view of the adverse health effects associated with dietary LOP ingestion, alternative methodologies for the incorporation of soybean oils within high-temperature frying practices are proposed. Full article
Show Figures

Figure 1

14 pages, 271 KiB  
Article
Synthesis and Biological Properties of Novel Triazole-Thiol and Thiadiazole Derivatives of the 1,2,4-Triazole-3(5)-one Class
by Esra Düğdü, Yasemin Ünver, Dilek Ünlüer and Kemal Sancak
Molecules 2014, 19(2), 2199-2212; https://doi.org/10.3390/molecules19022199 - 19 Feb 2014
Cited by 23 | Viewed by 7797
Abstract
2,2'-(4,4'(Butane-1,4-diyl/hexane-1,6-diyl)bis(3-methyl-5-oxo-4,5-dihydro-1,2,4- triazole-4,1-diyl)) diacetohydrazides 3a,b were obtained via the formation of diethyl 2,2'-(4,4'(butane-1,4-diyl/hexane-1,6-diyl)bis(3-methyl-5-oxo-4,5-dihydro-1,2,4-triazole-4,1- diyl))diacetates 2a,b, obtained starting from di-[3(methyl-2-yl-methyl)-4,5-dihydro-1H-[1,2,4]-triazole-5-one-4yl]-n-alkanes 1a,b in two steps. The synthesis of the compounds 7a,b9a [...] Read more.
2,2'-(4,4'(Butane-1,4-diyl/hexane-1,6-diyl)bis(3-methyl-5-oxo-4,5-dihydro-1,2,4- triazole-4,1-diyl)) diacetohydrazides 3a,b were obtained via the formation of diethyl 2,2'-(4,4'(butane-1,4-diyl/hexane-1,6-diyl)bis(3-methyl-5-oxo-4,5-dihydro-1,2,4-triazole-4,1- diyl))diacetates 2a,b, obtained starting from di-[3(methyl-2-yl-methyl)-4,5-dihydro-1H-[1,2,4]-triazole-5-one-4yl]-n-alkanes 1a,b in two steps. The synthesis of the compounds 7a,b9a,b incorporating the 1,3,4-thiadiazole, and 10a,b11a,b with a 1,2,4-triazole-thiol nucleus as the second heterocycle, was performed by the acidic or basic treatment of compounds 4a,b6a,b which were obtained from the reaction of 3a,b with several isothiocyanates. Newly synthesized compounds were screened for antimicrobial activities and their antioxidant properties by the 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging method. Compounds 4a,b, 5a,b, and 6a,b were found to possess good antioxidant properties. Almost all compounds have significant antimicrobial activities. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

Back to TopTop