Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = 3-epilupeol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2075 KiB  
Article
Chemical Profiles and Nitric Oxide Inhibitory Activities of the Copal Resin and Its Volatile Fraction of Bursera bipinnata
by Silvia Marquina, Mayra Antunez-Mojica, Judith González-Christen, Antonio Romero-Estrada, Fidel Ocampo-Bautista, Ninfa Yaret Nolasco-Quintana, Araceli Guerrero-Alonso and Laura Alvarez
Forests 2025, 16(7), 1144; https://doi.org/10.3390/f16071144 - 11 Jul 2025
Viewed by 381
Abstract
Bursera bipinnata (DC.) Engl. (B. bipinnata), commonly known as “copal chino,” is a widely distributed Mexican tree found in transitional zones between pine-oak and deciduous forests. It is valued for its high-quality copal resin, traditionally used in ceremonies and offerings. Additionally, B. bipinnata [...] Read more.
Bursera bipinnata (DC.) Engl. (B. bipinnata), commonly known as “copal chino,” is a widely distributed Mexican tree found in transitional zones between pine-oak and deciduous forests. It is valued for its high-quality copal resin, traditionally used in ceremonies and offerings. Additionally, B. bipinnata is recognized for its significant value in traditional medicine, particularly in treating ailments associated with inflammation. In this work, the inhibition of nitric oxide (NO) production of the volatile fraction and resin of B. bipinnata in LPS-stimulated RAW 264.7 macrophage cells were demonstrated. In contrast, the volatile fraction exhibited 37.43 ± 7.13% inhibition at a concentration of 40 µg/mL. Chromatographic analyses of the total resin enabled the chemical characterization of eleven pentacyclic triterpenes belonging to the ursane, oleanane, and lupane series, as well as eight monoterpenes. Notably, the structures of compounds 15, 17, and 2935 are reported for the first time from the resin of Bursera bipinnata. The anti-inflammatory activity observed for B. bipinnata resin in this study may be attributed to its high content of the triterpenes α-amyrin (15, 29.7%) and 3-epilupeol (17, 38.1%), both known for their anti-inflammatory properties. These findings support the traditional use of this copal resin. Full article
(This article belongs to the Special Issue Medicinal and Edible Uses of Non-Timber Forest Resources)
Show Figures

Graphical abstract

15 pages, 6957 KiB  
Article
Obtaining 2,3-Dihydrobenzofuran and 3-Epilupeol from Ageratina pichinchensis (Kunth) R.King & Ho.Rob. Cell Cultures Grown in Shake Flasks under Photoperiod and Darkness, and Its Scale-Up to an Airlift Bioreactor for Enhanced Production
by Mariana Sánchez-Ramos, Silvia Marquina-Bahena, Laura Alvarez, Antonio Bernabé-Antonio, Emmanuel Cabañas-García, Angélica Román-Guerrero and Francisco Cruz-Sosa
Molecules 2023, 28(2), 578; https://doi.org/10.3390/molecules28020578 - 6 Jan 2023
Cited by 8 | Viewed by 3068
Abstract
Ageratina pichinchensis (Kunth) R.King & Ho.Rob. is a plant used in traditional Mexican medicine, and some biotechnological studies have shown that its calluses and cell suspension cultures can produce important anti-inflammatory compounds. In this study, we established a cell culture of A. pichinchensis [...] Read more.
Ageratina pichinchensis (Kunth) R.King & Ho.Rob. is a plant used in traditional Mexican medicine, and some biotechnological studies have shown that its calluses and cell suspension cultures can produce important anti-inflammatory compounds. In this study, we established a cell culture of A. pichinchensis in a 2 L airlift bioreactor and evaluated the production of the anti-inflammatory compounds 2,3-dihydrobenzofuran (1) and 3-epilupeol (2). The maximum biomass production (11.90 ± 2.48 g/L) was reached at 11 days of culture and cell viability was between 80% and 90%. Among kinetic parameters, the specific growth rate (µ) was 0.2216 days−1 and doubling time (td) was 3.13 days. Gas chromatography coupled with mass spectrometry (GC-MS) analysis of extracts showed the maximum production of compound 1 (903.02 ± 41.06 µg/g extract) and compound 2 (561.63 ± 10.63 µg/g extract) at 7 and 14 days, respectively. This study stands out for the significant production of 2,3-dihydrobenzofuran and 3-epilupeol and by the significant reduction in production time compared to callus and cell suspension cultures, previously reported. To date, these compounds have not been found in the wild plant, i.e., its production has only been reported in cell cultures of A. pichinchensis. Therefore, plant cell cultured in an airlift reactor can be an alternative for the improved production of these anti-inflammatory compounds. Full article
(This article belongs to the Special Issue Discovery of Bioactive Ingredients from Natural Products, 3rd Edition)
Show Figures

Figure 1

19 pages, 3533 KiB  
Article
Establishment of a Cell Suspension Culture of Ageratina pichinchensis (Kunth) for the Improved Production of Anti-Inflammatory Compounds
by Mariana Sánchez-Ramos, Laura Alvarez, Antonio Romero-Estrada, Antonio Bernabé-Antonio, Silvia Marquina-Bahena and Francisco Cruz-Sosa
Plants 2020, 9(10), 1398; https://doi.org/10.3390/plants9101398 - 21 Oct 2020
Cited by 19 | Viewed by 4268
Abstract
Ageratina pichinchensis (Kunth) is a plant used in traditional Mexican medicine to treat multiple ailments. However, there have not been biotechnological studies on producing compounds in in vitro cultures. The aim of this study was to establish a cell suspension culture of A. [...] Read more.
Ageratina pichinchensis (Kunth) is a plant used in traditional Mexican medicine to treat multiple ailments. However, there have not been biotechnological studies on producing compounds in in vitro cultures. The aim of this study was to establish a cell suspension culture of A. pichinchensis, quantify the anti-inflammatory constituents 2,3-dihydrobenzofuran (2) and 3-epilupeol (3), evaluate the anti-inflammatory potential of its extracts, and perform a phytochemical analysis. Cell suspension cultures were established in a MS culture medium of 30-g L−1 sucrose, 1.0-mg L−1 α-naphthaleneacetic acid, and 0.1-mg L−1 6-furfurylaminopurine. The ethyl acetate extract of the cell culture analyzed by gas chromatography (GC) revealed that the maximum production of anti-inflammatory compounds 2 and 3 occurs on days eight and 16, respectively, improving the time and previously reported yields in callus cultures. The anti-inflammatory activity of these extracts exhibited a significant inhibition of nitric oxide (NO) production. Furthermore, a phytochemical study of the ethyl acetate (EtOAc) and methanol (MeOH) extracts from day 20 led to the identification of 17 known compounds. The structures of the compounds were assigned by an analysis of 1D and 2D NMR data and the remainder by GC–MS. This is the first report of the production of (-)-Artemesinol, (-)-Artemesinol glucoside, encecalin, and 3,5-diprenyl-acetophenone by a cell suspension culture of A. pichinchensis. Full article
(This article belongs to the Special Issue Biotechnological Approaches for the Production of Bioactives)
Show Figures

Graphical abstract

14 pages, 1850 KiB  
Article
Establishment and Phytochemical Analysis of a Callus Culture from Ageratina pichinchensis (Asteraceae) and Its Anti-Inflammatory Activity
by Mariana Sánchez-Ramos, Silvia Marquina Bahena, Antonio Romero-Estrada, Antonio Bernabé-Antonio, Francisco Cruz-Sosa, Judith Gonzálesssz-Christen, Juan José Acevedo-Fernández, Irene Perea-Arango and Laura Alvarez
Molecules 2018, 23(6), 1258; https://doi.org/10.3390/molecules23061258 - 25 May 2018
Cited by 30 | Viewed by 4880
Abstract
A protocol was established to produce bioactive compounds in a callus culture of Ageratina pichinchensis by using 1 mg L−1 NAA with 0.1 mg L−1 KIN. The phytochemical study of the EtOAc extract obtained from the callus biomass, allowed the isolation [...] Read more.
A protocol was established to produce bioactive compounds in a callus culture of Ageratina pichinchensis by using 1 mg L−1 NAA with 0.1 mg L−1 KIN. The phytochemical study of the EtOAc extract obtained from the callus biomass, allowed the isolation and characterization of eleven secondary metabolites, of which dihydrobenzofuran (5) and 3-epilupeol (7), showed important anti-inflammatory activity. Compound 5 inhibits in vitro the secretion of NO (IC50 = 36.96 ± 1.06 μM), IL-6 (IC50 = 73.71 ± 3.21 μM), and TNF-α (IC50 = 73.20 ± 5.99 μM) in RAW (Murine macrophage cells) 264.7 macrophages, as well as the activation of NF-κB (40% at 150 μM) in RAW-blue macrophages, while compound 7 has been described that inhibit the in vivo TPA-induced ear edema, and the in vitro production of NO, and the PLA2 enzyme activity. In addition, quantitative GC-MS analysis showed that the anti-inflammatory metabolites 5 and 7 were not detected in the wild plant. Overall, our results indicated that A. pichinchensis can be used as an alternative biotechnological resource for obtaining anti-inflammatory compounds. This is the first report of the anti-inflammatory activity of compound 5 and its production in a callus culture of A. pichinchensis. Full article
Show Figures

Figure 1

12 pages, 320 KiB  
Article
In Vitro Antiprotozoal Activity of Triterpenoid Constituents of Kleinia odora Growing in Saudi Arabia
by Nawal M. Al Musayeib, Ramzi A. Mothana, Ali A. El Gamal, Shaza M. Al-Massarani and Louis Maes
Molecules 2013, 18(8), 9207-9218; https://doi.org/10.3390/molecules18089207 - 31 Jul 2013
Cited by 43 | Viewed by 6550
Abstract
Two lupane and four ursane triterpenes, namely epilupeol (1), lupeol acetate (2), ursolic acid (3), brein (4), 3β 11α-dihydroxy urs-12-ene (5) and ursolic acid lactone (6) were isolated from aerial parts [...] Read more.
Two lupane and four ursane triterpenes, namely epilupeol (1), lupeol acetate (2), ursolic acid (3), brein (4), 3β 11α-dihydroxy urs-12-ene (5) and ursolic acid lactone (6) were isolated from aerial parts of Kleinia odora and identified. Compounds 1 and 36 were isolated for the first time from K. odora. The triterpene constituents were investigated for antiprotozoal potential against erythrocytic schizonts of Plasmodium falciparum, intracellular amastigotes of Leishmania infantum and Trypanosoma cruzi and free trypomastigotes of T. brucei. Cytotoxicity was determined against MRC-5 fibroblasts to assess selectivity. The ursane triterpenes were found to be active against more than one type of the tested parasites, with the exception of compound 6. This is also the first report on the occurrence of ursane type triterpenes in the genus Kleinia and their antiprotozoal potential against P. falciparum, L. infantum, T. cruzi, and T. brucei. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

Back to TopTop