Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = 1060 aluminum substrate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7823 KiB  
Article
Microstructure and Properties of Aluminum–Graphene–SiC Matrix Composites after Friction Stir Processing
by Chen Wang, Xianyong Zhu, Yuexiang Fan, Jiaan Liu, Liangwen Xie, Cheng Jiang, Xiong Xiao, Peng Wu and Xiangmi You
Materials 2024, 17(5), 979; https://doi.org/10.3390/ma17050979 - 20 Feb 2024
Cited by 9 | Viewed by 1973
Abstract
Enhancing the mechanical properties of conventional ceramic particles-reinforced aluminum (Al 1060) metal matrix composites (AMCs) with lower detrimental phases is difficult. In this research work, AMCs are reinforced with graphene nanosheet (GNS) and hybrid reinforcement (GNS combined with 20% SiC, synthesized by shift-speed [...] Read more.
Enhancing the mechanical properties of conventional ceramic particles-reinforced aluminum (Al 1060) metal matrix composites (AMCs) with lower detrimental phases is difficult. In this research work, AMCs are reinforced with graphene nanosheet (GNS) and hybrid reinforcement (GNS combined with 20% SiC, synthesized by shift-speed ball milling (SSBM), and further fabricated by two-pass friction stir processing (FSP). The effect of GNS content and the addition of SiC on the microstructure and mechanical properties of AMCs are studied. The microstructure, elemental, and phase composition of the developed composite are examined using SEM, EDS, and XRD techniques, respectively. Mechanical properties such as hardness, wear, and tensile strength are analyzed. The experimental results show that the GNS and the SiC are fairly distributed in the Al matrix via SSBM, which is beneficial for the mechanical properties of the composites. The maximum tensile strength of the composites is approximately 171.3 MPa in AMCs reinforced by hybrid reinforcements. The tensile strength of the GNS/Al composites increases when the GNS content increases from 0 to 1%, but then reduces with the further increase in GNS content. The hardness increases by 2.3%, 24.9%, 28.9%, and 41.8% when the Al 1060 is reinforced with 0.5, 1, 2% GNS, and a hybrid of SiC and GNS, respectively. The SiC provides further enhancement of the hardness of AMCs reinforced by GNS. The coefficient of friction decreases by about 7%, 13%, and 17% with the reinforcement of 0.5, 1, and 2% GNS, respectively. Hybrid reinforcement has the lowest friction coefficient (0.41). The decreasing friction coefficient contributes to the self-lubrication of GNSs, the reduction in the contact area with the substrate, and the load-bearing ability of ceramic particles. According to this study, the strengthening mechanisms of the composites may be due to thermal mismatch, grain refinement, and Orowan looping. In summary, such hybrid reinforcements effectively improve the mechanical and tribological properties of the composites. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

14 pages, 2935 KiB  
Article
Optimization of Processing Parameters and Adhesive Properties of Aluminum Oxide Thin-Film Transition Layer for Aluminum Substrate Thin-Film Sensor
by Yongjuan Zhao, Wenge Wu, Yunping Cheng and Wentao Yan
Micromachines 2022, 13(12), 2115; https://doi.org/10.3390/mi13122115 - 30 Nov 2022
Cited by 1 | Viewed by 2177
Abstract
A thin-film strain micro-sensor is a cutting force sensor that can be integrated with tools. Its elastic substrate is an important intermediate to transfer the strain generated by the tools during cutting to the resistance-grid-sensitive layer. In this paper, 1060 aluminum is selected [...] Read more.
A thin-film strain micro-sensor is a cutting force sensor that can be integrated with tools. Its elastic substrate is an important intermediate to transfer the strain generated by the tools during cutting to the resistance-grid-sensitive layer. In this paper, 1060 aluminum is selected as the elastic substrate material and aluminum oxide thin film is selected as the transition layer between the aluminum substrate and the silicon nitride insulating layer. The Stoney correction formula applicable to the residual stress of the aluminum oxide film is derived, and the residual stress of the aluminum oxide film on the aluminum substrate is obtained. The influence of Sputtering pressure, argon flow and negative substrate bias process parameters on the surface quality and sputtering power of the aluminum oxide thin film is discussed. The relationship model between process parameters, surface roughness, and sputtering rate of thin films is established. The sputtering process parameters for preparing an aluminum oxide thin film are optimized. The micro-surface quality of the aluminum oxide thin film obtained before and after the optimization of the process parameters and the surface quality of Si3N4 thin film sputtered on alumina thin film before and after the optimization are compared. It is verified that the optimized process parameters of aluminum oxide film as a transition layer can improve the adhesion between the insulating-layer silicon nitride film and the aluminum substrate. Full article
(This article belongs to the Special Issue NEMS/MEMS Devices and Applications)
Show Figures

Figure 1

15 pages, 6029 KiB  
Article
Microstructural Characterization and Formation Mechanism of Nitrided Layers on Aluminum Substrates by Thermal Plasma Nitriding
by Xin Li, Weida Xin, Xiaoyi Zheng, Zhen’an Ren, Daqian Sun and Wanli Lu
Metals 2019, 9(5), 523; https://doi.org/10.3390/met9050523 - 7 May 2019
Cited by 12 | Viewed by 2858
Abstract
Nitrided layers on 6082 aluminum alloy substrates and 1060 aluminum substrates are formed at atmospheric pressure using thermal nitrogen plasma, which only takes seconds to form a millimeter-level layer. The nitrided layers are composed of aluminum nitride (AlN) and aluminum solid solution phases. [...] Read more.
Nitrided layers on 6082 aluminum alloy substrates and 1060 aluminum substrates are formed at atmospheric pressure using thermal nitrogen plasma, which only takes seconds to form a millimeter-level layer. The nitrided layers are composed of aluminum nitride (AlN) and aluminum solid solution phases. Microstructures in these nitrided layers can be divided into three regions from bottom to top: the transition region, the dendrite region, and the lamella region. These regions are formed in sequence. The formation mechanisms and processes of the three regions are discussed in detail. Furthermore, we found that Al melt is transported upward through the voids and the capillaries in the AlN structures, and reacts with N plasma in the melt surface. The growth of the AlN structures promotes this transport. With the increase of N2 flow rates from 1 L/min to 7.5 L/min, both the hardness and the wear resistance of the nitrided layers are improved, and the nitrided layer becomes thicker. Full article
Show Figures

Figure 1

Back to TopTop