Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = β-hill climbing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1768 KiB  
Article
FST Polymorphisms Associate with Musculoskeletal Traits and Modulate Exercise Response Differentially by Sex and Modality in Northern Han Chinese Adults
by Wei Cao, Zhuangzhuang Gu, Ronghua Fu, Yiru Chen, Yong He, Rui Yang, Xiaolin Yang and Zihong He
Genes 2025, 16(7), 810; https://doi.org/10.3390/genes16070810 - 10 Jul 2025
Viewed by 368
Abstract
Background/Objectives: To investigate associations between Follistatin (FST) gene polymorphisms (SNPs) and baseline musculoskeletal traits, and their interactions with 16-week exercise interventions. Methods: A cohort of 470 untrained Northern Han Chinese adults (208 males, 262 females), sourced from the “Research [...] Read more.
Background/Objectives: To investigate associations between Follistatin (FST) gene polymorphisms (SNPs) and baseline musculoskeletal traits, and their interactions with 16-week exercise interventions. Methods: A cohort of 470 untrained Northern Han Chinese adults (208 males, 262 females), sourced from the “Research on Key Technologies for an Exercise and Fitness Expert Guidance System” project, was analyzed. These participants were previously randomly assigned to one of four exercise groups (Hill, Running, Cycling, Combined) or a non-exercising Control group, and completed their respective 16-week protocols. Body composition, bone mineral content (BMC), bone mineral density (BMD), and serum follistatin levels were all assessed pre- and post-intervention. Dual-energy X-ray absorptiometry (DXA) was utilized for the body composition, BMC, and BMD measurements. FST SNPs (rs3797296, rs3797297) were genotyped using matrix assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF MS) or microarrays. To elucidate the biological mechanisms, we performed in silico functional analyses for rs3797296 and rs3797297. Results: Baseline: In females only, the rs3797297 T allele was associated with higher muscle mass (β = 1.159, 95% confidence interval (CI): 0.202–2.116, P_adj = 0.034) and BMC (β = 0.127, 95% CI: 0.039–0.215, P_adj = 0.009), with the BMC effect significantly mediated by muscle mass. Exercise Response: Interventions improved body composition, particularly in females. Gene-Exercise Interaction: A significant interaction occurred exclusively in women undertaking hill climbing: the rs3797296 G allele was associated with attenuated muscle mass gains (β = −1.126 kg, 95% CI: −1.767 to −0.485, P_adj = 0.034). Baseline follistatin correlated with body composition (stronger in males) and increased post-exercise (primarily in males, Hill/Running groups) but did not mediate SNP effects on exercise adaptation. Functional annotation revealed that rs3797297 is a likely causal variant, acting as a skeletal muscle eQTL for the mitochondrial gene NDUFS4, suggesting a mechanism involving muscle bioenergetics. Conclusions: Findings indicate that FST polymorphisms associate with musculoskeletal traits in Northern Han Chinese. Mechanistic insights from functional annotation reveal potential pathways for these associations, highlighting the potential utility of these genetic markers for optimizing training program design. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

15 pages, 2599 KiB  
Article
Hybrid Muddy Soil Fish Optimization-Based Energy Aware Routing in IoT-Assisted Wireless Sensor Networks
by Mohammed Rizwanullah, Hadeel Alsolai, Mohamed K. Nour, Amira Sayed A. Aziz, Mohamed I. Eldesouki and Amgad Atta Abdelmageed
Sustainability 2023, 15(10), 8273; https://doi.org/10.3390/su15108273 - 19 May 2023
Cited by 14 | Viewed by 1917
Abstract
The seamless operation of interconnected smart devices in wireless sensor networks (WSN) and the Internet of Things (IoT) needs continuously accessible end-to-end routes. However, the sensor node (SN) relies on a limited power source and tends to cause disconnection in multi-hop routes because [...] Read more.
The seamless operation of interconnected smart devices in wireless sensor networks (WSN) and the Internet of Things (IoT) needs continuously accessible end-to-end routes. However, the sensor node (SN) relies on a limited power source and tends to cause disconnection in multi-hop routes because of a power shortage in the WSN, eventually leading to the inefficiency of the total IoT network. Furthermore, the density of available SNs affects the existence of feasible routes and the level of path multiplicity in the WSN. Thus, an effective routing model is predictable to extend the lifetime of WSN by adaptively choosing the better route for the data transfers between interconnected IoT devices. This study develops a Hybrid Muddy Soil Fish Optimization-based Energy Aware Routing Scheme (HMSFO-EARS) for IoT-assisted WSN. The presented HMSFO-EARS technique majorly focuses on the identification of optimal routes for data transmission in the IoT-assisted WSN. To accomplish this, the presented HMSFO-EARS technique involves the integration of the MSFO algorithm with the Adaptive β-Hill Climbing (ABHC) concept. Moreover, the presented HMSFO-EARS technique derives a fitness function for maximizing the lifespan and minimizing energy consumption. To demonstrate the enhanced performance of the HMSFO-EARS technique, a series of experiments was performed. The simulation results indicate the better performance of the HMSFO-EARS algorithm over other recent approaches with reduced energy consumption, less delay, high throughput, and extended network lifetime. Full article
(This article belongs to the Special Issue IoT Quality Assessment and Sustainable Optimization)
Show Figures

Figure 1

16 pages, 10682 KiB  
Article
EEG Channel Selection Based User Identification via Improved Flower Pollination Algorithm
by Zaid Abdi Alkareem Alyasseri, Osama Ahmad Alomari, João P. Papa, Mohammed Azmi Al-Betar, Karrar Hameed Abdulkareem, Mazin Abed Mohammed, Seifedine Kadry, Orawit Thinnukool and Pattaraporn Khuwuthyakorn
Sensors 2022, 22(6), 2092; https://doi.org/10.3390/s22062092 - 8 Mar 2022
Cited by 15 | Viewed by 3676
Abstract
The electroencephalogram (EEG) introduced a massive potential for user identification. Several studies have shown that EEG provides unique features in addition to typical strength for spoofing attacks. EEG provides a graphic recording of the brain’s electrical activity that electrodes can capture on the [...] Read more.
The electroencephalogram (EEG) introduced a massive potential for user identification. Several studies have shown that EEG provides unique features in addition to typical strength for spoofing attacks. EEG provides a graphic recording of the brain’s electrical activity that electrodes can capture on the scalp at different places. However, selecting which electrodes should be used is a challenging task. Such a subject is formulated as an electrode selection task that is tackled by optimization methods. In this work, a new approach to select the most representative electrodes is introduced. The proposed algorithm is a hybrid version of the Flower Pollination Algorithm and β-Hill Climbing optimizer called FPAβ-hc. The performance of the FPAβ-hc algorithm is evaluated using a standard EEG motor imagery dataset. The experimental results show that the FPAβ-hc can utilize less than half of the electrode numbers, achieving more accurate results than seven other methods. Full article
Show Figures

Figure 1

Back to TopTop