Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = ÄKTA pure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3539 KiB  
Article
Simultaneous Isolation and Purification of Transferrin and Immunoglobulin G from Human Serum—A New Biotech Solution
by Danilo Četić, Goran Miljuš, Zorana Dobrijević, Nikola Gligorijević, Aleksandra Vilotić, Olgica Nedić and Ana Penezić
Molecules 2025, 30(5), 993; https://doi.org/10.3390/molecules30050993 - 21 Feb 2025
Viewed by 867
Abstract
A fast and simple biotech method is presented for the simultaneous isolation and purification of transferrin (Tf) and immunoglobulin G (IgG) from the same pool-sample of human serum, yielding >98% pure proteins. Serum sample preparation was achieved by precipitation with ethacridine lactate (rivanol). [...] Read more.
A fast and simple biotech method is presented for the simultaneous isolation and purification of transferrin (Tf) and immunoglobulin G (IgG) from the same pool-sample of human serum, yielding >98% pure proteins. Serum sample preparation was achieved by precipitation with ethacridine lactate (rivanol). Protein purification was performed with AKTA Avant 150 FPLC, using a Resource Q column. Three different buffers at pH 6.2 (MES, phosphate, and Bis-Tris) were tested. Isolated and purified proteins retained their native 3D structure, as shown by spectrofluorimetric measurements. Tf functionality was preserved, as confirmed by the retention of both the iron binding capacity and its ability to interact with the transferrin receptor (immunofluorescent staining), as well as the immunogenicity of IgG, as shown by Western blot analysis with immunodetection. The formation of IgG aggregates was avoided. This biotech method is a rapid, simple, and time-saving alternative to other methods for the isolation of extremely pure IgG and Tf, while it is also the only method so far described for their simultaneous isolation. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

17 pages, 4308 KiB  
Article
Characterisation and Bioactivity Analysis of Peridinin-Chlorophyll a-Protein (PCP) Isolated from Symbiodinium tridacnidorum CS-73
by Kanoknate M. Supasri, Manoj Kumar, Anna Segečová, Janice I. McCauley, Andrei Herdean, Matthew P. Padula, Tim O’Meara and Peter J. Ralph
J. Mar. Sci. Eng. 2021, 9(12), 1387; https://doi.org/10.3390/jmse9121387 - 6 Dec 2021
Cited by 10 | Viewed by 4526
Abstract
Peridinin-Chlorophyll a-Proteins (PCP) are the major light harvesting proteins in photosynthetic dinoflagellates. PCP shows great variation in protein length, pigment ratio, sequence, and spectroscopic properties. PCP conjugates (PerCP) are widely used as fluorescent probes for cellular and tissue analysis in the biomedical [...] Read more.
Peridinin-Chlorophyll a-Proteins (PCP) are the major light harvesting proteins in photosynthetic dinoflagellates. PCP shows great variation in protein length, pigment ratio, sequence, and spectroscopic properties. PCP conjugates (PerCP) are widely used as fluorescent probes for cellular and tissue analysis in the biomedical field. PCP consists of a peridinin carotenoid; thereby, it can potentially be used as a bioactive compound in pharmaceutical applications. However, the biological activities of PCP are yet to be explored. In this study, we extracted, purified, and partially characterised the PCP from Symbiodinium tridacnidorum (CS-73) and explored its antioxidant, anti-cancer and anti-inflammation bioactivities. The PCP was purified using an ÄKTA™ PURE system and predicted to be of 17.3 kDa molecular weight (confirmed as a single band on SDS-PAGE) with an isoelectric point (pI) 5.6. LC-MS/MS and bioinformatic analysis of purified PCP digested with trypsin indicated it was 164 amino acids long with >90% sequence similarity to PCP of SymA3.s6014_g3 (belonging to clade A of Symbiodinium sp.) confirmed with 59 peptide combinations matched across its protein sequence. The spectroscopic properties of purified PCP showed a slight shift in absorption and emission spectra to previously documented analysis in Symbiodinium species possibly due to variation in amino acid sequences that interact with chl a and peridinin. Purified PCP consisted of a 19-amino-acid-long signal peptide at its N terminal and nine helixes in its secondary structure, with several protein binding sites and no DNA/RNA binding site. Furthermore, purified PCP exhibited antioxidant and in vitro anti-inflammation bioactivities, and anti-cancer activities against human metastatic breast adenocarcinoma (MDA-MB-231) and human colorectal (HTC-15) cancer cell lines. Together, all these findings present PCP as a promising candidate for continued investigations for pharmaceutical applications to cure chronic diseases, apart from its existing application as a fluorescent-probe. Full article
(This article belongs to the Special Issue Research and Advance in Marine Biotechnology)
Show Figures

Figure 1

20 pages, 9844 KiB  
Article
Bioevaluation of Pheretima vulgaris Antithrombotic Extract, PvQ, and Isolation, Identification of Six Novel PvQ-Derived Fibrinolytic Proteases
by Wanqing Yang, Wenjie Wang, Yunnan Ma, Qilin Yang, Pengyue Li and Shouying Du
Molecules 2021, 26(16), 4946; https://doi.org/10.3390/molecules26164946 - 16 Aug 2021
Cited by 16 | Viewed by 3390
Abstract
Thrombosis is a disease that seriously endangers human health, with a high rate of mortality and disability. However, current treatments with thrombolytic drugs (such as recombinant tissue-plasminogen activator) and the oral anticoagulants (such as dabigatran and rivaroxaban) are reported to have a tendency [...] Read more.
Thrombosis is a disease that seriously endangers human health, with a high rate of mortality and disability. However, current treatments with thrombolytic drugs (such as recombinant tissue-plasminogen activator) and the oral anticoagulants (such as dabigatran and rivaroxaban) are reported to have a tendency of major or life-threatening bleeding, such as intracranial hemorrhage or massive gastrointestinal bleed with non-specific antidotes. In contrast, lumbrokinase is very specific to fibrin as a substrate and does not cause excessive bleeding. It can dissolve the fibrin by itself or convert plasminogen to plasmin by inducing endogenous t-PA activity to dissolve fibrin clots. Therefore, searching for potentially new therapeutic molecules from earthworms is significant. In this study, we first collected a strong fibrinolytic extract (PvQ) from the total protein of the Pheretima vulgaris with AKTA pure protein purification systems; its fibrinolytic bioactivity was verified by the fibrin plate assay and zebrafish thrombotic model of vascular damage. Furthermore, according to the cell culture model of human umbilical vein endothelial cells (HUVECs), the PvQ was proven to exhibit the ability to promote the secretion of tissue-type plasminogen activator (t-PA), which further illustrated that it has an indirect thrombolytic effect. Subsequently, extensive chromatographic techniques were applied to reveal the material basis of the extract. Fortunately, six novel earthworm fibrinolytic enzymes were obtained from the PvQ, and the primary sequences of those functional proteins were determined by LC-MS/MStranscriptome cross-identification and the Edman degradation assay. The secondary structures of these six fibrinolytic enzymes were determined by circular dichroism spectroscopy and the three-dimensional structures of these proteases were predicted by MODELLER 9.23 based on multi-template modelling. In addition, those six genes encoding blood clot-dissolving proteins were cloned from P. vulgaris by RT-PCR amplification, which further determined the accuracy of proteins primary sequences identifications and laid the foundation for subsequent heterologous expression. Full article
Show Figures

Graphical abstract

14 pages, 2507 KiB  
Communication
Detection and Isolation of Emetic Bacillus cereus Toxin Cereulide by Reversed Phase Chromatography
by Eva Maria Kalbhenn, Tobias Bauer, Timo D. Stark, Mandy Knüpfer, Gregor Grass and Monika Ehling-Schulz
Toxins 2021, 13(2), 115; https://doi.org/10.3390/toxins13020115 - 4 Feb 2021
Cited by 5 | Viewed by 4742
Abstract
The emetic toxin cereulide is a 1.2 kDa dodecadepsipeptide produced by the food pathogen Bacillus cereus. As cereulide poses a serious health risk to humans, sensitive and specific detection, as well as toxin purification and quantification, methods are of utmost importance. Recently, [...] Read more.
The emetic toxin cereulide is a 1.2 kDa dodecadepsipeptide produced by the food pathogen Bacillus cereus. As cereulide poses a serious health risk to humans, sensitive and specific detection, as well as toxin purification and quantification, methods are of utmost importance. Recently, a stable isotope dilution assay tandem mass spectrometry (SIDA–MS/MS)-based method has been described, and an method for the quantitation of cereulide in foods was established by the International Organization for Standardization (ISO). However, although this SIDA–MS/MS method is highly accurate, the sophisticated high-end MS equipment required for such measurements limits the method’s suitability for microbiological and molecular research. Thus, we aimed to develop a method for cereulide toxin detection and isolation using equipment commonly available in microbiological and biochemical research laboratories. Reproducible detection and relative quantification of cereulide was achieved, employing reversed phase chromatography (RPC). Chromatographic signals were cross validated by ultraperformance liquid chromatography–mass spectrometry (UPLC–MS/MS). The specificity of the RPC method was tested using a test panel of strains that included non-emetic representatives of the B. cereus group, emetic B. cereus strains, and cereulide-deficient isogenic mutants. In summary, the new method represents a robust, economical, and easily accessible research tool that complements existing diagnostics for the detection and quantification of cereulide. Full article
(This article belongs to the Special Issue Bacillus cereus Toxins)
Show Figures

Figure 1

11 pages, 1918 KiB  
Article
Purification of Bioactive Peptide with Antimicrobial Properties Produced by Saccharomyces cerevisiae
by Shayma Thyab Gddoa Al-sahlany, Ammar B. Altemimi, Alaa Jabbar Abd Al-Manhel, Alaa Kareem Niamah, Naoufal Lakhssassi and Salam A. Ibrahim
Foods 2020, 9(3), 324; https://doi.org/10.3390/foods9030324 - 11 Mar 2020
Cited by 65 | Viewed by 7483
Abstract
A variety of organisms produce bioactive peptides that express inhibition activity against other organisms. Saccharomyces cerevisiae is considered the best example of a unicellular organism that is useful for studying peptide production. In this study, an antibacterial peptide was produced and isolated from [...] Read more.
A variety of organisms produce bioactive peptides that express inhibition activity against other organisms. Saccharomyces cerevisiae is considered the best example of a unicellular organism that is useful for studying peptide production. In this study, an antibacterial peptide was produced and isolated from Saccharomyces cerevisiae (Baker’s yeast) by an ultrafiltration process (two membranes with cut-offs of 2 and 10 kDa) and purified using the ÄKTA Pure 25 system. Antibacterial peptide activity was characterized and examined against four bacterial strains including Gram-positive and Gram-negative bacteria. The optimum condition for yeast growth and antibacterial peptide production against both Escherichia. coli and Klebsiella aerogenes was 25–30 °C within a 48 h period. The isolated peptide had a molecular weight of 9770 Da, was thermostable at 50–90 °C for 30 min, and tolerated a pH range of 5–7 at 4 °C and 25 °C during the first 24 h, making this isolated antibacterial peptides suitable for use in sterilization and thermal processes, which are very important aspect in food production. The isolated antibacterial peptide caused a rapid and steady decline in the number of viable cells from 2 to 2.3 log units of gram-negative strains and from 1.5 to 1.8 log units of gram-positive strains during 24 h of incubation. The isolated antibacterial peptide from Saccharomyces cerevisiae may present a potential biopreservative compound in the food industry exhibiting inhibition activity against gram-negative and gram-positive bacteria. Full article
(This article belongs to the Special Issue Bioactive Peptides: Characteristic, Bioavailability and Application)
Show Figures

Figure 1

Back to TopTop