Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = (Al5%,Mg1%) co-doped ZnO

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4663 KiB  
Article
Core/Shell ZnO/TiO2, SiO2/TiO2, Al2O3/TiO2, and Al1.9Co0.1O3/TiO2 Nanoparticles for the Photodecomposition of Brilliant Blue E-4BA
by Mahboubeh Dolatyari, Mehdi Tahmasebi, Sudabeh Dolatyari, Ali Rostami, Armin Zarghami, Ashish Yadav and Axel Klein
Inorganics 2024, 12(11), 281; https://doi.org/10.3390/inorganics12110281 - 30 Oct 2024
Cited by 4 | Viewed by 1827
Abstract
The synthesis and characterization of ZnO/TiO2, SiO2/TiO2, Al2O3/TiO2, and Al1.9Co0.1O3/TiO2 core/shell nanoparticles (NPs) is reported. The NPs were used for photocatalytic degradation of brilliant [...] Read more.
The synthesis and characterization of ZnO/TiO2, SiO2/TiO2, Al2O3/TiO2, and Al1.9Co0.1O3/TiO2 core/shell nanoparticles (NPs) is reported. The NPs were used for photocatalytic degradation of brilliant blue E-4BA under UV and visible light irradiation, monitored by high-performance liquid chromatography and UV-vis absorption spectroscopy. The size of the NPs ranged from 10 to 30 nm for the core and an additional 3 nm for the TiO2 shell. Al2O3/TiO2 and Al1.9Co0.1O3/TiO2 showed superior degradation under UV and visible light compared to ZnO/TiO2 and SiO2/TiO2 with complete photodecomposition of 20 ppm dye in 20 min using a 10 mg/100 mL photocatalyst. The “Co-doped” Al1.9Co0.1O3/TiO2 NPs show the best performance under visible light irradiation, which is due to increased absorption in the visible range. DFT-calculated band structure calculations confirm the generation of additional electronic levels in the band gap of γ-Al2O3 through Co3+ ions. This indicates that Co-doping enhances the generation of electron–hole pairs after visible light irradiation. Full article
(This article belongs to the Special Issue New Advances into Nanostructured Oxides, 2nd Edition)
Show Figures

Figure 1

27 pages, 3869 KiB  
Review
Various Applications of ZnO Thin Films Obtained by Chemical Routes in the Last Decade
by Mariuca Gartner, Hermine Stroescu, Daiana Mitrea and Madalina Nicolescu
Molecules 2023, 28(12), 4674; https://doi.org/10.3390/molecules28124674 - 9 Jun 2023
Cited by 36 | Viewed by 6770
Abstract
This review addresses the importance of Zn for obtaining multifunctional materials with interesting properties by following certain preparation strategies: choosing the appropriate synthesis route, doping and co-doping of ZnO films to achieve conductive oxide materials with p- or n-type conductivity, and finally adding [...] Read more.
This review addresses the importance of Zn for obtaining multifunctional materials with interesting properties by following certain preparation strategies: choosing the appropriate synthesis route, doping and co-doping of ZnO films to achieve conductive oxide materials with p- or n-type conductivity, and finally adding polymers in the oxide systems for piezoelectricity enhancement. We mainly followed the results of studies of the last ten years through chemical routes, especially by sol-gel and hydrothermal synthesis. Zinc is an essential element that has a special importance for developing multifunctional materials with various applications. ZnO can be used for the deposition of thin films or for obtaining mixed layers by combining ZnO with other oxides (ZnO-SnO2, ZnO-CuO). Also, composite films can be achieved by mixing ZnO with polymers. It can be doped with metals (Li, Na, Mg, Al) or non-metals (B, N, P). Zn is easily incorporated in a matrix and therefore it can be used as a dopant for other oxidic materials, such as: ITO, CuO, BiFeO3, and NiO. ZnO can be very useful as a seed layer, for good adherence of the main layer to the substrate, generating nucleation sites for nanowires growth. Thanks to its interesting properties, ZnO is a material with multiple applications in various fields: sensing technology, piezoelectric devices, transparent conductive oxides, solar cells, and photoluminescence applications. Its versatility is the main message of this review. Full article
Show Figures

Figure 1

17 pages, 8429 KiB  
Article
Mössbauer and Structure-Magnetic Properties Analysis of AyB1−yCxFe2−xO4 (C=Ho,Gd,Al) Ferrite Nanoparticles Optimized by Doping
by Qing Lin, Fang Yang, Qian Zhang, Kaimin Su, Huiren Xu, Yun He and Jinpei Lin
Molecules 2023, 28(10), 4226; https://doi.org/10.3390/molecules28104226 - 22 May 2023
Cited by 4 | Viewed by 1548
Abstract
AyB1−yCxFe2−xO4 (C=Ho,Gd,Al) ferrite powders have been synthesized by the sol-gel combustion route. The X-ray diffraction of the CoHoxFe2−xO4 (x = 0~0.08) results indicated [...] Read more.
AyB1−yCxFe2−xO4 (C=Ho,Gd,Al) ferrite powders have been synthesized by the sol-gel combustion route. The X-ray diffraction of the CoHoxFe2−xO4 (x = 0~0.08) results indicated the compositions of single-phase cubic ferrites. The saturation magnetisation of CoHoxFe2−xO4 decreased by the Ho3+ ions, and the coercivity increased initially and then decreased with the increase of the calcination temperature. The Mössbauer spectra indicated that CoHoxFe2−xO4 displays a ferrimagnetic behaviour with two normal split Zeeman sextets. The magnetic hyperfine field tends to decrease by Ho3+ substitution owing to the decrease of the A–B super-exchange by the paramagnetic rare earth Ho3+ ions. The value of the quadrupole shift was very small in the CoHoxFe2−xO4 specimens, indicating that the symmetry of the electric field around the nucleus is good in the cobalt ferrites. The absorption area of the Mössbauer spectra changed with increasing Ho3+ substitution, indicating that the substitution influences the fraction of iron ions at tetrahedral A and octahedral B sites. The X-ray diffraction of Mg0.5Zn0.5CxFe2−xO4(C=Gd,Al) results confirmed the compositions of single-phase cubic ferrites. The variation of the average crystalline size and lattice constant are related to the doping of gadolinium ions and aluminum ions. With increasing gadolinium ions and aluminum ions, the coercivity increased and the saturation magnetization underwent a significant change. The saturation magnetization of AlMg0.5Zn0.5FeO4 ferrite reached a minimum value (MS= 1.94 mu/g). The sample exhibited ferrimagnetic and paramagnetic character with the replacement with Gd3+ ions, that sample exhibited paramagnetic character with the replacement with Al3+ ions, and the isomer shift values indicated that iron is in the form of Fe3+ ions. Full article
(This article belongs to the Special Issue Magnetic Nanomaterials: Modern Trends and Prospects)
Show Figures

Figure 1

17 pages, 10640 KiB  
Article
Effect of Al and Mg Doping on Reducing Gases Detection of ZnO Nanoparticles
by Soumaya Jaballah, Yazeed Alaskar, Ibrahim AlShunaifi, Imed Ghiloufi, Giovanni Neri, Chaker Bouzidi, Hassen Dahman and Lassaad El Mir
Chemosensors 2021, 9(11), 300; https://doi.org/10.3390/chemosensors9110300 - 24 Oct 2021
Cited by 26 | Viewed by 3524
Abstract
In this work, the main objective is to enhance the gas sensing capability through investigating the effect of Al and Mg doping on ZnO based sensors. ZnO, Mg1% doped ZnO, Al5% doped ZnO and (Al5%, Mg1%) co-doped ZnO [...] Read more.
In this work, the main objective is to enhance the gas sensing capability through investigating the effect of Al and Mg doping on ZnO based sensors. ZnO, Mg1% doped ZnO, Al5% doped ZnO and (Al5%, Mg1%) co-doped ZnO nanoparticles (NPs) were synthesized by a modified sol-gel method. The structural characterization showed the hexagonal crystalline structure of the prepared samples. Morphological characterizations confirmed the nanometric sizes of the NPs (27–57 nm) and elemental composition investigation proved the existence of Al and Mg with low concentrations. The optical characterization showed the high absorbance of the synthesized samples in the UV range. The gas sensing performances of the synthesized samples, prepared in the form of thick films, were investigated. Sensing tests demonstrated the high influence of the Al and Mg on the sensing performances towards H2 and CO gas, respectively. The 5A1MZO-based sensor exhibits high sensitivity and low detection limits to H2 (<2 ppm) and CO (<1 ppm). It showed a response around 70 (at 250 °C) towards 2000 ppm H2 and 2 (at 250 °C) towards CO. Full article
Show Figures

Figure 1

12 pages, 3648 KiB  
Article
Processing and Study of Optical and Electrical Properties of (Mg, Al) Co-Doped ZnO Thin Films Prepared by RF Magnetron Sputtering for Photovoltaic Application
by Chayma Abed, Susana Fernández, Selma Aouida, Habib Elhouichet, Fernando Priego, Yolanda Castro, M. B. Gómez-Mancebo and Carmen Munuera
Materials 2020, 13(9), 2146; https://doi.org/10.3390/ma13092146 - 6 May 2020
Cited by 20 | Viewed by 3089
Abstract
In this study, high transparent thin films were prepared by radio frequency (RF) magnetron sputtering from a conventional solid state target based on ZnO:MgO:Al2O3 (10:2 wt %) material. The films were deposited on glass and silicon substrates at the different [...] Read more.
In this study, high transparent thin films were prepared by radio frequency (RF) magnetron sputtering from a conventional solid state target based on ZnO:MgO:Al2O3 (10:2 wt %) material. The films were deposited on glass and silicon substrates at the different working pressures of 0.21, 0.61, 0.83 and 1 Pa, 300 °C and 250 W of power. X-ray diffraction patterns (XRD), atomic force microscopy (AFM), UV-vis absorption and Hall effect measurements were used to evaluate the structural, optical, morphological and electrical properties of thin films as a function of the working pressure. The optical properties of the films, such as the refractive index, the extinction coefficient and the band gap energy were systematically studied. The optical band gap of thin films was estimated from the calculated absorption coefficient. That parameter, ranged from 3.921 to 3.655 eV, was hardly influenced by the working pressure. On the other hand, the lowest resistivity of 8.8 × 10−2 Ω cm−1 was achieved by the sample deposited at the lowest working pressure of 0.21 Pa. This film exhibited the best optoelectronic properties. All these data revealed that the prepared thin layers would offer a good capability to be used in photovoltaic applications. Full article
(This article belongs to the Special Issue Advanced Materials for Photonics and Photovoltaics Applications)
Show Figures

Figure 1

15 pages, 5747 KiB  
Article
Influence of Dopant Nature on Biological Properties of ZnO Thin-Film Coatings on Ti Alloy Substrate
by Stefania Stoleriu, Codruta Lungu, Cristina Daniela Ghitulica, Adrian Surdu, Georgeta Voicu, Andreia Cucuruz, Claudiu Stefan Turculet and Lucian Toma Ciocan
Nanomaterials 2020, 10(1), 129; https://doi.org/10.3390/nano10010129 - 10 Jan 2020
Cited by 10 | Viewed by 3454
Abstract
In this paper, ZnO and Co2+/Mg2+-doped ZnO thin films on TiAlV alloy substrates were obtained. The films were deposited by spin coating of sol-gel precursor solutions and thermally treated at 600 °C for 2 h, in air and slow [...] Read more.
In this paper, ZnO and Co2+/Mg2+-doped ZnO thin films on TiAlV alloy substrates were obtained. The films were deposited by spin coating of sol-gel precursor solutions and thermally treated at 600 °C for 2 h, in air and slow cooled. The doping ions concentration was 1.0 mol%. The study’s aim was to obtain implantable metallic materials with improved biocompatibility and antibacterial qualities. The characteristics of the thin films were assessed from the point of view of microstructure, morphology, wetting properties, antibacterial activity and biological response in the presence of amniotic fluid stem cells (AFSC). The results proved that all deposited samples were nanostructured, suggesting a very good antibacterial effect and proving to be suitable supports for cellular adhesion and proliferation. All properties also depended on the doping ion nature. Full article
Show Figures

Figure 1

19 pages, 8081 KiB  
Article
Doped Nanoscale NMC333 as Cathode Materials for Li-Ion Batteries
by Ahmed M. Hashem, Ashraf E. Abdel-Ghany, Marco Scheuermann, Sylvio Indris, Helmut Ehrenberg, Alain Mauger and Christian M. Julien
Materials 2019, 12(18), 2899; https://doi.org/10.3390/ma12182899 - 7 Sep 2019
Cited by 27 | Viewed by 5826
Abstract
A series of Li(Ni1/3Mn1/3Co1/3)1−xMxO2 (M = Al, Mg, Zn, and Fe, x = 0.06) was prepared via sol-gel method assisted by ethylene diamine tetra acetic acid as a chelating agent. A [...] Read more.
A series of Li(Ni1/3Mn1/3Co1/3)1−xMxO2 (M = Al, Mg, Zn, and Fe, x = 0.06) was prepared via sol-gel method assisted by ethylene diamine tetra acetic acid as a chelating agent. A typical hexagonal α-NaFeO2 structure (R-3m space group) was observed for parent and doped samples as revealed by X-ray diffraction patterns. For all samples, hexagonally shaped nanoparticles were observed by scanning electron microscopy and transmission electron microscopy. The local structure was characterized by infrared, Raman, and Mössbauer spectroscopy and 7Li nuclear magnetic resonance (Li-NMR). Cyclic voltammetry and galvanostatic charge-discharge tests showed that Mg and Al doping improved the electrochemical performance of LiNi1/3Mn1/3Co1/3O2 in terms of specific capacities and cyclability. In addition, while Al doping increases the initial capacity, Mg doping is the best choice as it improves cyclability for reasons discussed in this work. Full article
Show Figures

Figure 1

12 pages, 3250 KiB  
Article
CO2 Methanation over Ni/Al@MAl2O4 (M = Zn, Mg, or Mn) Catalysts
by Thien An Le, Jieun Kim, Yu Ri Jeong and Eun Duck Park
Catalysts 2019, 9(7), 599; https://doi.org/10.3390/catal9070599 - 11 Jul 2019
Cited by 21 | Viewed by 5283
Abstract
In this study, unique core-shell aluminate spinel supports, Al@MAl2O4 (M = Zn, Mg, or Mn), were obtained by simple hydrothermal surface oxidation and were applied to the preparation of supported Ni catalysts for CO2 methanation. For comparison, CO methanation [...] Read more.
In this study, unique core-shell aluminate spinel supports, Al@MAl2O4 (M = Zn, Mg, or Mn), were obtained by simple hydrothermal surface oxidation and were applied to the preparation of supported Ni catalysts for CO2 methanation. For comparison, CO methanation was also evaluated using the same catalysts. The prepared catalysts were characterized with a variety of techniques, including N2 physisorption, CO2 chemisorption, H2 chemisorption, temperature-programmed reduction with H2, temperature-programmed desorption of CO2, X-ray diffraction, high-resolution transmission electron microscopy, and in-situ diffuse reflectance infrared Fourier transform spectroscopy. The combination of supports with core-shell spinel structures and Ni doping with a deposition–precipitation method created outstanding catalytic performance of the Ni catalysts supported on Al@MgAl2O4 and Al@MnAl2O4 due to improved dispersion of Ni nanoparticles and creation of moderate basic sites with suitable strength. Good stability of Ni/Al@MnAl2O4 catalyst was also confirmed in the study. Full article
(This article belongs to the Special Issue Catalysis and Catalytic Processes for CO2 Conversion)
Show Figures

Graphical abstract

Back to TopTop