Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = therapeutic water
Page = 2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3291 KB  
Review
The Noscapine Saga: Unravelling a Valuable Jewel from a Poppy Pod—Past, Present and Future
by Anjali Priyadarshani, Rishit Bhatia and Muniba Shan
Psychoactives 2024, 3(1), 1-21; https://doi.org/10.3390/psychoactives3010001 - 10 Jan 2024
Cited by 2 | Viewed by 8009
Abstract
Noscapine is a naturally occurring alkaloid isolated from Papaver somniferum, commonly known as opium poppy or bread seed poppy. It edges over other opioids as it lacks addictive, sedative or euphoric effects. This review chronicles the saga of endeavours with noscapine, from [...] Read more.
Noscapine is a naturally occurring alkaloid isolated from Papaver somniferum, commonly known as opium poppy or bread seed poppy. It edges over other opioids as it lacks addictive, sedative or euphoric effects. This review chronicles the saga of endeavours with noscapine, from modest efforts in the mid-1950s to its present anticancer potential and futuristic hope in combating COVID-19. We comprehensively searched for publications including noscapine- and noscapinoid-relevant keywords in different electronic databases such as PubMed, Google Scholars, Elsevier, Springer Link and Science Direct up to June 2023. We excluded those in a language other than English. Noscapine has long been used as an antitussive and suppresses coughing by reducing the activity of the cough centre in the brain. A great number of water-soluble noscapine analogues have been found to be impressive microtubule-interfering agents with a superior antiproliferative activity, inhibiting the proliferation of cancer cell lines with more potency than noscapine and bromo-noscapine. With enhanced drug delivery systems, noscapine has exerted significant therapeutic efficacy in animal models of Parkinson’s disease, polycystic ovary syndrome, multiple sclerosis and other disorders. Furthermore, the merit of noscapine in crossing the blood–brain barrier makes it a putative candidate agent against neurodegenerative and psychiatric diseases. Its long safety record, widespread availability and ease of administration make it an ideal candidate for fighting several life-threatening conditions. Recent promising docking studies onnoscapine with main protease (Mpro) of SARS-CoV-2 paves the way for combinatorial drug therapy with anti-viral drugs and is hopeful in fighting and triumphing over any future COVID-19 pandemic. Full article
Show Figures

Figure 1

14 pages, 3495 KB  
Article
Preparation and In Vitro Testing of Brinzolamide-Loaded Poly Lactic-Co-Glycolic Acid (PLGA) Nanoparticles for Sustained Drug Delivery
by Ann-Marie Ako-Adounvo and Pradeep K. Karla
J. Clin. Transl. Ophthalmol. 2024, 2(1), 1-14; https://doi.org/10.3390/jcto2010001 - 9 Jan 2024
Cited by 4 | Viewed by 3542
Abstract
Glaucoma therapy aims at lowering intra-ocular pressure (IOP). Brinzolamide, a carbonic anhydrase inhibitor, is utilized as a second-line medication for treating ocular hypertension and primary open-angle glaucoma (POAG). The drug lowers the IOP making it a therapeutic agent against glaucoma, and due to [...] Read more.
Glaucoma therapy aims at lowering intra-ocular pressure (IOP). Brinzolamide, a carbonic anhydrase inhibitor, is utilized as a second-line medication for treating ocular hypertension and primary open-angle glaucoma (POAG). The drug lowers the IOP making it a therapeutic agent against glaucoma, and due to its poor water solubility, is commercially available as Azopt®, a 1% ophthalmic suspension. Adverse effects such as blurred vision, ocular irritation, discomfort, and bitter taste are associated with the use of the marketed brinzolamide formulation. This study aims to test the feasibility of formulating and in vitro testing of brinzolamide-PLGA nanoparticles for improved toxicity profile. The nanoparticles were prepared by the oil-in-water (O/W) emulsion-solvent evaporation method. Particle size and zeta potential were determined by dynamic light scattering (DLS). The morphology of the nanoparticles was determined by scanning electron microscopy (SEM). Encapsulation of the drug was verified by high-performance liquid chromatography (HPLC) and the compatibility of the polymer and drug was verified by Fourier transform infrared (FTIR) spectroscopy. The in vitro drug release profile was assessed employing the dialysis method. Intracellular localization of the nanoparticles was assessed by confocal microscopy utilizing Rhodamine 123-loaded nanoparticles. Cytotoxicity of the formulation was assessed on Statens Seruminstitut Rabbit Cornea (SIRC) and transfected Human Corneal Epithelial (SV40 HCEC) cell lines. The particle size of the nanoparticle formulations ranged from 202.3 ± 2.9 nm to 483.1 ± 27.9 nm for blank nanoparticles, and 129.6 ± 1.5 nm to 350.9 ± 8.5 nm for drug-loaded nanoparticles. The polydispersity of the formulations ranged from 0.071 ± 0.032 to 0.247 ± 0.043 for blank nanoparticles, and 0.089 ± 0.028 to 0.158 ± 0.004 for drug-loaded nanoparticles. Drug loading and encapsulation efficiencies ranged from 7.42–15.84% and 38.93–74.18%, respectively. The in vitro drug release profile for the optimized formulation was biphasic, with a ~54% burst release for the initial 3 h, followed by a cumulative 85% and 99% released at 24 and 65 h, respectively. Uptake study showed nanoparticles(NPs) localization in the cytoplasm and around the nuclei of the cells. Brinzolamide-PLGA nanoparticles were successfully developed, characterized, and tested in vitro. Preliminary data show intracellular localization of the nanoparticles in the cytoplasm of SIRC and SV40 HCEC cells. The formulations appeared to be relatively non-cytotoxic to the cells. The research data from the study provided preliminary data for successful development and promising in vitro absorption efficacy for brinzolamide-loaded PLGA nanoparticle formulation. Full article
Show Figures

Figure 1

9 pages, 867 KB  
Article
Development and Validation of a Simple HPLC-UV Assay Method for Determination of Levetiracetam Concentrations in Human Plasma
by Maged Kharouba and Sherif Hanafy Mahmoud
Analytica 2023, 4(1), 1-9; https://doi.org/10.3390/analytica4010001 - 4 Jan 2023
Cited by 5 | Viewed by 6719
Abstract
Levetiracetam (LEV) is a broad spectrum antiseizure medication that is used in various seizure types. There is evidence that therapeutic drug monitoring (TDM) of LEV is of value in selected patient populations, therefore determination of LEV plasma concentrations is essential. Herein we developed [...] Read more.
Levetiracetam (LEV) is a broad spectrum antiseizure medication that is used in various seizure types. There is evidence that therapeutic drug monitoring (TDM) of LEV is of value in selected patient populations, therefore determination of LEV plasma concentrations is essential. Herein we developed and validated a simple, reproducible, and practical method for the quantification of LEV concentrations in human plasma samples using high performance liquid chromatography (HPLC). Plasma samples (0.3 mL) deproteinization was done using acetonitrile. HPLC chromatographic separation of plasma samples was accomplished by reversed phase C18 column. The mobile phase constituted water and acetonitrile (90:10, v/v) ran at flow rate of 1 mL/min. Signal acquisition was conducted at a wavelength of 192 nm. Calibration curves showed excellent linearity (Correlation coefficient r2 > 0.99) over a concentration range of 3–80 μg/mL. Both inter and intraday assay accuracy and precision were less than 8% (except for the lowest limit of quantification was within 20%). Elution time was 15 min. The developed method excluded the use of buffers and utilized small volumes of plasma samples with simple mobile phase composition. Therefore, our method could be practically applied to routine TDM. Full article
Show Figures

Figure 1

Back to TopTop