Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = catalytic process
Page = 2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5529 KB  
Review
Bimetallic Fenton-like Catalysts in the Remediation of Dyes
by Lydia R. Milam and Roy P. Planalp
Colorants 2024, 3(1), 1-16; https://doi.org/10.3390/colorants3010001 - 21 Dec 2023
Cited by 4 | Viewed by 2584
Abstract
Remediation of organic dyes in natural waters is a significant environmental need under active study. This review analyzes bimetallic catalytic degradation systems that are based on the Fenton chemistry concept and that generate reactive oxygen species (ROS) as the agent of dye breakdown. [...] Read more.
Remediation of organic dyes in natural waters is a significant environmental need under active study. This review analyzes bimetallic catalytic degradation systems that are based on the Fenton chemistry concept and that generate reactive oxygen species (ROS) as the agent of dye breakdown. Recently developed advanced oxidation processes (AOPs) take advantage of bimetallic heterogeneous catalysts to facilitate rapid rates and full degradation. Catalysts based on two metals including iron, copper, molybdenum, cobalt and magnesium are discussed mechanistically as examples of effective radical ROS producers. The reactive oxygen species hydroxyl radical, superoxide radical, sulfate radical and singlet oxygen are discussed. System conditions for the best degradation are compared, with implementation techniques mentioned. The outlook for further studies of dye degradation is presented. Full article
(This article belongs to the Special Issue Feature Papers in Colorant Chemistry)
Show Figures

Figure 1

25 pages, 21843 KB  
Review
Hydrothermal Synthesis of Vanadium Oxide Microstructures with Mixed Oxidation States
by Daniel Navas
Reactions 2023, 4(1), 1-25; https://doi.org/10.3390/reactions4010001 - 28 Dec 2022
Cited by 11 | Viewed by 6124
Abstract
This review is based on hydrothermal synthetic procedures that generate different vanadium oxide microstructures with mixed oxidation states, where different vanadium (V5+) precursors (vanadate, vanadium oxide, vanadium alkoxide, etc.,) are used to obtain various types of morphologies and shapes, such as [...] Read more.
This review is based on hydrothermal synthetic procedures that generate different vanadium oxide microstructures with mixed oxidation states, where different vanadium (V5+) precursors (vanadate, vanadium oxide, vanadium alkoxide, etc.,) are used to obtain various types of morphologies and shapes, such as sea urchins, cogs, stars, squares, etc., depending on the amphiphilic molecules (usually surfactants) exhibiting a structural director role containing an organic functional group such as primary amines and thiols, respectively. The performance of sol–gel methodology, where intercalation processes sometimes take place, is crucial prior to the hydrothermal treatment stage to control the V4+/V5+. In every synthesis, many physical and chemical parameters, such as temperature, pH, reaction time., etc., are responsible for influencing the reactions in order to obtain different products; the final material usually corresponds to a mixed oxidation state structure with different content rates. This feature has been used in many technological applications, and some researchers have enhanced it by functionalizing the products to enhance their electrochemical and magnetic properties. Although some results have been auspicious, there are a number of projects underway to improve the synthesis in many ways, including yield, secondary products, size distribution, oxidation state ratio, etc., to achieve the best benefits from these microstructures in the large number of technological, catalytic, and magnetic devices, among other applications. Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2022)
Show Figures

Figure 1

15 pages, 5195 KB  
Review
An Overview of Common Infrared Techniques for Detecting CO Intermediates on Metal Surfaces for Hydrocarbon Products
by Ahmed M. El-Zohry
Physchem 2022, 2(1), 1-15; https://doi.org/10.3390/physchem2010001 - 8 Jan 2022
Cited by 2 | Viewed by 4080
Abstract
Detection of intermediates during the catalytic process by infrared techniques has been widely implemented for many important reactions. For the reduction of CO2 into hydrocarbons on metal surfaces, CO molecule is one of the most important transient species to be followed due [...] Read more.
Detection of intermediates during the catalytic process by infrared techniques has been widely implemented for many important reactions. For the reduction of CO2 into hydrocarbons on metal surfaces, CO molecule is one of the most important transient species to be followed due to its involvement in several products’ pathways, and its distinct vibrational features. Herein, basic understandings behind these utilized infrared techniques are illustrated aiming for highlighting the potential of each infrared technique and its advantages over the other ones for detecting CO molecules on metal surfaces. Full article
(This article belongs to the Special Issue Physical Chemistry Perspectives for the New Decade)
Show Figures

Graphical abstract

11 pages, 1581 KB  
Article
Kinetic Modeling for the “One-Pot” Hydrogenolysis of Cellulose to Glycols over Ru@Fe3O4/Polymer Catalyst
by Oleg Manaenkov, Yuriy Kosivtsov, Valentin Sapunov, Olga Kislitsa, Mikhail Sulman, Alexey Bykov, Alexander Sidorov and Valentina Matveeva
Reactions 2022, 3(1), 1-11; https://doi.org/10.3390/reactions3010001 - 22 Dec 2021
Cited by 5 | Viewed by 3285
Abstract
Despite numerous works devoted to the cellulose hydrogenolysis process, only some of them describe reaction kinetics. This is explained by the complexity of the process and the simultaneous behavior of different reactions. In this work, we present the results of the kinetic study [...] Read more.
Despite numerous works devoted to the cellulose hydrogenolysis process, only some of them describe reaction kinetics. This is explained by the complexity of the process and the simultaneous behavior of different reactions. In this work, we present the results of the kinetic study of glucose hydrogenolysis into ethylene- and propylene glycols in the presence of Ru@Fe3O4/HPS catalyst as a part of the process of catalytic conversion of cellulose into glycols. The structure of the Ru-containing magnetically separable Ru@Fe3O4/HPS catalysts supported on the polymeric matrix of hypercrosslinked polystyrene was studied to propose the reaction scheme. As a result of this study, a formal description of the glucose hydrogenolysis process into glycols was performed. Based on the data obtained, the mathematical model of the glucose hydrogenolysis kinetics in the presence of Ru@Fe3O4/HPS was developed and the parameter estimation was carried out. The synthesized catalyst was found to be characterized by the enhanced magnetic properties and higher catalytic activity in comparison with previously developed catalytic systems (i.e., on the base of SiO2). The summarized selectivity towards the glycols formation was found to be ca. 42% at 100% of the cellulose conversion in the presence of Ru@Fe3O4/HPS. Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2021)
Show Figures

Figure 1

29 pages, 943 KB  
Review
Regulation of the Tumor-Suppressor Function of the Class III Phosphatidylinositol 3-Kinase Complex by Ubiquitin and SUMO
by Christina Reidick, Fouzi El Magraoui, Helmut E. Meyer, Harald Stenmark and Harald W. Platta
Cancers 2015, 7(1), 1-29; https://doi.org/10.3390/cancers7010001 - 23 Dec 2014
Cited by 30 | Viewed by 13791
Abstract
The occurrence of cancer is often associated with a dysfunction in one of the three central membrane-involution processes—autophagy, endocytosis or cytokinesis. Interestingly, all three pathways are controlled by the same central signaling module: the class III phosphatidylinositol 3-kinase (PI3K-III) complex and its catalytic [...] Read more.
The occurrence of cancer is often associated with a dysfunction in one of the three central membrane-involution processes—autophagy, endocytosis or cytokinesis. Interestingly, all three pathways are controlled by the same central signaling module: the class III phosphatidylinositol 3-kinase (PI3K-III) complex and its catalytic product, the phosphorylated lipid phosphatidylinositol 3-phosphate (PtdIns3P). The activity of the catalytic subunit of the PI3K-III complex, the lipid-kinase VPS34, requires the presence of the membrane-targeting factor VPS15 as well as the adaptor protein Beclin 1. Furthermore, a growing list of regulatory proteins associates with VPS34 via Beclin 1. These accessory factors define distinct subunit compositions and thereby guide the PI3K-III complex to its different cellular and physiological roles. Here we discuss the regulation of the PI3K-III complex components by ubiquitination and SUMOylation. Especially Beclin 1 has emerged as a highly regulated protein, which can be modified with Lys11-, Lys48- or Lys63-linked polyubiquitin chains catalyzed by distinct E3 ligases from the RING-, HECT-, RBR- or Cullin-type. We also point out other cross-links of these ligases with autophagy in order to discuss how these data might be merged into a general concept. Full article
Show Figures

Figure 1

Back to TopTop