Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Authors = Zhongda Sun

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3874 KiB  
Article
Baicalin Inhibits FIPV Infection In Vitro by Modulating the PI3K-AKT Pathway and Apoptosis Pathway
by Zhongda Cao, Nannan Ma, Maoyang Shan, Shiyan Wang, Jige Du, Jia Cheng, Panpan Sun, Na Sun, Lin Jin, Kuohai Fan, Wei Yin, Hongquan Li, Chunsheng Yin and Yaogui Sun
Int. J. Mol. Sci. 2024, 25(18), 9930; https://doi.org/10.3390/ijms25189930 - 14 Sep 2024
Cited by 3 | Viewed by 2057
Abstract
Feline infectious peritonitis (FIP), a serious infectious disease in cats, has become a challenging problem for pet owners and the industry due to the lack of effective vaccinations and medications for prevention and treatment. Currently, most natural compounds have been proven to have [...] Read more.
Feline infectious peritonitis (FIP), a serious infectious disease in cats, has become a challenging problem for pet owners and the industry due to the lack of effective vaccinations and medications for prevention and treatment. Currently, most natural compounds have been proven to have good antiviral activity. Hence, it is essential to develop efficacious novel natural compounds that inhibit FIPV infection. Our study aimed to screen compounds with in vitro anti-FIPV effects from nine natural compounds that have been proven to have antiviral activity and preliminarily investigate their mechanisms of action. In this study, the CCK-8 method was used to determine the maximum noncytotoxic concentration (MNTC), 50% cytotoxic concentration (CC50), and 50% effective concentration (EC50) of natural compounds on CRFK cells and the maximum inhibition ratio (MIR) of the compounds inhibit FIPV. The effect of natural compounds on FIPV-induced apoptosis was detected via Annexin V-FITC/PI assay. Network pharmacology (NP), molecular docking (MD), and 4D label-free quantitative (4D-LFQ) proteomic techniques were used in the joint analysis the mechanism of action of the screened natural compounds against FIPV infection. Finally, Western blotting was used to validate the analysis results. Among the nine natural compounds, baicalin had good antiviral effects, with an MIR > 50% and an SI > 3. Baicalin inhibited FIPV-induced apoptosis. NP and MD analyses showed that AKT1 was the best target of baicalin for inhibiting FIPV infection. 4D-LFQ proteomics analysis showed that baicalin might inhibit FIPV infection by modulating the PI3K-AKT pathway and the apoptosis pathway. The WB results showed that baicalin promoted the expression of EGFR, PI3K, and Bcl-2 and inhibited the expression of cleaved caspase 9 and Bax. This study found that baicalin regulated the PI3K-AKT pathway and the apoptosis pathway in vitro and inhibited FIPV-induced apoptosis, thus exerting anti-FIPV effects. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

14 pages, 6084 KiB  
Article
Three-Dimensional Shape and Deformation Measurements Based on Fringe Projection Profilometry and Fluorescent Digital Image Correlation via a 3 Charge Coupled Device Camera
by Wei Sun, Zhongda Xu, Xin Li, Zhenning Chen and Xinqiao Tang
Sensors 2023, 23(15), 6663; https://doi.org/10.3390/s23156663 - 25 Jul 2023
Cited by 5 | Viewed by 2072
Abstract
We propose a novel hybrid FPP-DIC technique to measure an object’s shape and deformation in 3D simultaneously by using a single 3CCD color camera, which captures the blue fringe patterns and red fluorescent speckles within the same image. Firstly, red fluorescent speckles were [...] Read more.
We propose a novel hybrid FPP-DIC technique to measure an object’s shape and deformation in 3D simultaneously by using a single 3CCD color camera, which captures the blue fringe patterns and red fluorescent speckles within the same image. Firstly, red fluorescent speckles were painted on the surface of the specimen. Subsequently, 12 computer-generated blue fringe patterns with a black background were projected onto the surface of the specimen using a DLP projector. Finally, both the reference and deformed images with three different frequencies and four shifted phases were captured using a 3CCD camera. This technique employed a three-chip configuration in which red–green–blue chips were discretely integrated in the 3CCD color camera sensor, rendering independent capture of RGB information possible. Measurement of out-of-plane displacement was carried out through the implementation of Fringe Projection Profilometry (FPP), whereas the in-plane displacement was evaluated using a 2D Digital Image Correlation (DIC) method by leveraging a telecentric-lens-based optical system. In comparison to the traditional FPP-DIC hybrid methodology, the present approach showed a lower incidence of crosstalk between the fringe patterns and speckle patterns while also offering a corrective for the coupling of the in-plane displacement and out-of-plane displacement. Experimental results for the in-plane cantilever beam and out-of-plane disk comparisons with the traditional 3D-DIC method indicated that the maximum discrepancy obtained between FPP-DIC and 3D-DIC was 0.7 μm and 0.034 mm with different magnifications, respectively, validating the effectiveness and precision of the novel proposed FPP-DIC method. Full article
(This article belongs to the Special Issue Precision Optical Metrology and Smart Sensing)
Show Figures

Figure 1

14 pages, 5168 KiB  
Article
Study on the Compressive Properties of an Elastomeric Porous Cylinder Using 360° Three-Dimensional Digital Image Correlation System
by Wei Sun, Jie Zhao, Xin Li, Zhongda Xu and Zhenning Chen
Materials 2023, 16(12), 4301; https://doi.org/10.3390/ma16124301 - 10 Jun 2023
Cited by 2 | Viewed by 1460
Abstract
To study the compressive properties of an elastomeric porous cylinder, a 360° 3D digital image correlation (DIC) system is proposed. This compact vibration isolation table system captures different segments of the object from four different angles and fields of view, enabling a comprehensive [...] Read more.
To study the compressive properties of an elastomeric porous cylinder, a 360° 3D digital image correlation (DIC) system is proposed. This compact vibration isolation table system captures different segments of the object from four different angles and fields of view, enabling a comprehensive measurement of the full surface of the object. To increase the stitching quality, a coarse–fine coordinate matching method is presented. First, a three-dimensional rigid body calibration auxiliary block is employed to track motion trajectory, which enables preliminary matching of four 3D DIC sub-systems. Subsequently, scattered speckle information characteristics guide fine matching. The accuracy of the 360° 3D DIC system is verified through a three-dimensional shape measurement conducted on a cylindrical shell, and the maximum relative error of the shell’s diameter is 0.52%. A thorough investigation of the 3D compressive displacements and strains exerted on the full surface of an elastomeric porous cylinder are investigated. The results demonstrate the robustness of the proposed 360° measuring system on calculating images with voids and indicate a negative Poisson’s ratio of periodically cylindrical porous structures. Full article
Show Figures

Figure 1

40 pages, 8599 KiB  
Review
Progress in the Triboelectric Human–Machine Interfaces (HMIs)-Moving from Smart Gloves to AI/Haptic Enabled HMI in the 5G/IoT Era
by Zhongda Sun, Minglu Zhu and Chengkuo Lee
Nanoenergy Adv. 2021, 1(1), 81-120; https://doi.org/10.3390/nanoenergyadv1010005 - 19 Sep 2021
Cited by 79 | Viewed by 11393
Abstract
Entering the 5G and internet of things (IoT) era, human–machine interfaces (HMIs) capable of providing humans with more intuitive interaction with the digitalized world have experienced a flourishing development in the past few years. Although the advanced sensing techniques based on complementary metal-oxide-semiconductor [...] Read more.
Entering the 5G and internet of things (IoT) era, human–machine interfaces (HMIs) capable of providing humans with more intuitive interaction with the digitalized world have experienced a flourishing development in the past few years. Although the advanced sensing techniques based on complementary metal-oxide-semiconductor (CMOS) or microelectromechanical system (MEMS) solutions, e.g., camera, microphone, inertial measurement unit (IMU), etc., and flexible solutions, e.g., stretchable conductor, optical fiber, etc., have been widely utilized as sensing components for wearable/non-wearable HMIs development, the relatively high-power consumption of these sensors remains a concern, especially for wearable/portable scenarios. Recent progress on triboelectric nanogenerator (TENG) self-powered sensors provides a new possibility for realizing low-power/self-sustainable HMIs by directly converting biomechanical energies into valuable sensory information. Leveraging the advantages of wide material choices and diversified structural design, TENGs have been successfully developed into various forms of HMIs, including glove, glasses, touchpad, exoskeleton, electronic skin, etc., for sundry applications, e.g., collaborative operation, personal healthcare, robot perception, smart home, etc. With the evolving artificial intelligence (AI) and haptic feedback technologies, more advanced HMIs could be realized towards intelligent and immersive human–machine interactions. Hence, in this review, we systematically introduce the current TENG HMIs in the aspects of different application scenarios, i.e., wearable, robot-related and smart home, and prospective future development enabled by the AI/haptic-feedback technology. Discussion on implementing self-sustainable/zero-power/passive HMIs in this 5G/IoT era and our perspectives are also provided. Full article
(This article belongs to the Special Issue Recent Advances in Nanogenerators)
Show Figures

Figure 1

30 pages, 8897 KiB  
Review
Development Trends and Perspectives of Future Sensors and MEMS/NEMS
by Jianxiong Zhu, Xinmiao Liu, Qiongfeng Shi, Tianyiyi He, Zhongda Sun, Xinge Guo, Weixin Liu, Othman Bin Sulaiman, Bowei Dong and Chengkuo Lee
Micromachines 2020, 11(1), 7; https://doi.org/10.3390/mi11010007 - 18 Dec 2019
Cited by 361 | Viewed by 34567
Abstract
With the fast development of the fifth-generation cellular network technology (5G), the future sensors and microelectromechanical systems (MEMS)/nanoelectromechanical systems (NEMS) are presenting a more and more critical role to provide information in our daily life. This review paper introduces the development trends and [...] Read more.
With the fast development of the fifth-generation cellular network technology (5G), the future sensors and microelectromechanical systems (MEMS)/nanoelectromechanical systems (NEMS) are presenting a more and more critical role to provide information in our daily life. This review paper introduces the development trends and perspectives of the future sensors and MEMS/NEMS. Starting from the issues of the MEMS fabrication, we introduced typical MEMS sensors for their applications in the Internet of Things (IoTs), such as MEMS physical sensor, MEMS acoustic sensor, and MEMS gas sensor. Toward the trends in intelligence and less power consumption, MEMS components including MEMS/NEMS switch, piezoelectric micromachined ultrasonic transducer (PMUT), and MEMS energy harvesting were investigated to assist the future sensors, such as event-based or almost zero-power. Furthermore, MEMS rigid substrate toward NEMS flexible-based for flexibility and interface was discussed as another important development trend for next-generation wearable or multi-functional sensors. Around the issues about the big data and human-machine realization for human beings’ manipulation, artificial intelligence (AI) and virtual reality (VR) technologies were finally realized using sensor nodes and its wave identification as future trends for various scenarios. Full article
(This article belongs to the Special Issue 10th Anniversary of Micromachines)
Show Figures

Figure 1

Back to TopTop