Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Authors = Yoshimi Seida ORCID = 0000-0002-9359-3161

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6466 KiB  
Article
The Development of an Efficient Simplified Technique to Estimate Diffusivity in a Completely Mixed Batch Reactor
by Yuya Koike, Huan-Jung Fan, Yoshimi Seida, Noriyoshi Sonetaka and Eiji Furuya
Appl. Sci. 2024, 14(11), 4903; https://doi.org/10.3390/app14114903 - 5 Jun 2024
Viewed by 1031
Abstract
Liquid-phase adsorption technology has been widely applied to address environmental problems related to the removal of pollutants from aqueous streams. Simple and effective methods for determining mass transfer parameters, including intra-particle and fluid-to-solid film resistances, are crucial for designing adsorption processes. The efficient [...] Read more.
Liquid-phase adsorption technology has been widely applied to address environmental problems related to the removal of pollutants from aqueous streams. Simple and effective methods for determining mass transfer parameters, including intra-particle and fluid-to-solid film resistances, are crucial for designing adsorption processes. The efficient simplified diffusion technique (ES technique), based on a completely mixed batch reactor (CMBR), is proposed in this study to address these needs. In this study, we compare three diffusivity (Ds) determination methods: the rigorous diffusion technique (R technique), the simplified diffusion technique (S technique), and the ES technique. Although the simulation results from the R technique are excellent, it is a very complicated and time-consuming approach that is not convenient for practical use. The S technique provides a much simpler approach, but its results are only valid in cases where the contribution of fluid film resistance is negligible (Biot number > 40). The ES technique proposed in this study can overcome those limitations. The estimation errors of the ES technique are significantly smaller than that of the S technique when compared with the R technique. The proposed ES technique would be very useful for field applications to determine diffusivity for aqueous adsorption systems. Full article
(This article belongs to the Special Issue Advanced Research in Activated Carbon Adsorption)
Show Figures

Figure 1

14 pages, 5338 KiB  
Article
Determination of Pore and Surface Diffusivities from Single Decay Curve in CSBR Based on Parallel Diffusion Model
by Yoshimi Seida, Noriyoshi Sonetaka, Kenneth E. Noll and Eiji Furuya
Water 2022, 14(22), 3629; https://doi.org/10.3390/w14223629 - 11 Nov 2022
Cited by 2 | Viewed by 2598
Abstract
A novel, simple numerical method to determine the pore and surface diffusivities in adsorbents from a single experimental concentration decay curve obtained using the batch adsorption technique was investigated in this study. The pore and surface diffusion coefficients were determined based on the [...] Read more.
A novel, simple numerical method to determine the pore and surface diffusivities in adsorbents from a single experimental concentration decay curve obtained using the batch adsorption technique was investigated in this study. The pore and surface diffusion coefficients were determined based on the conventional parallel diffusion model in its dimensionless form using a theoretical model correlation. The model assumed that the film mass transfer resistance was negligible, i.e., the condition with a large Biot number, from the single concentration decay curve. The procedure for determining the kinetic parameters was investigated, and the effectiveness of the proposed simple method was validated by comparing the parameters with those reported previously. The single decay curve of p-nitrophenol, obtained by the batch adsorption system using granular activated carbon as an adsorbent, was used for validation. The diffusivities determined by the simple method corresponded fairly well with the diffusivities reported previously. Full article
Show Figures

Graphical abstract

23 pages, 3716 KiB  
Review
Hydrogel Adsorbents for the Removal of Hazardous Pollutants—Requirements and Available Functions as Adsorbent
by Yoshimi Seida and Hideaki Tokuyama
Gels 2022, 8(4), 220; https://doi.org/10.3390/gels8040220 - 3 Apr 2022
Cited by 59 | Viewed by 7284
Abstract
Over the last few decades, various adsorption functions of polymer hydrogels for the removal of hazardous pollutants have been developed. The performance of hydrogel adsorbents depends on the constituents of the gels and the functions produced by the polymer networks of the gels. [...] Read more.
Over the last few decades, various adsorption functions of polymer hydrogels for the removal of hazardous pollutants have been developed. The performance of hydrogel adsorbents depends on the constituents of the gels and the functions produced by the polymer networks of the gels. Research on hydrogels utilizing the characteristic functions of polymer networks has increased over the last decade. The functions of polymer networks are key to the development of advanced adsorbents for the removal of various pollutants. No review has discussed hydrogel adsorbents from the perspective of the roles and functions of polymer networks in hydrogels. This paper briefly reviews the basic requirements of adsorbents and the general characteristics of hydrogels as adsorbents. Thereafter, hydrogels are reviewed on the basis of the roles and functions of the polymer networks in them for the removal of hazardous pollutants by introducing studies published over the last decade. The application of hydrogels as adsorbents for the removal of hazardous pollutants is discussed as well. Full article
(This article belongs to the Special Issue Removing Hazardous Materials from Water Using Polymer Hydrogel)
Show Figures

Graphical abstract

18 pages, 3979 KiB  
Article
Influence of Hydrophobicity of Backbone Polymer in Thermo-Responsive Hydrogel with Immobilized Amine on Cycle Capacity for Absorption and Recovery of CO2
by Yuma Nagasawa, Yoshimi Seida, Takehiko Gotoh and Eiji Furuya
Polymers 2019, 11(6), 1024; https://doi.org/10.3390/polym11061024 - 10 Jun 2019
Cited by 6 | Viewed by 4398
Abstract
The chemisorption process with amines is the major separation and recovery method of CO2 because of its high processing capacity and simplicity. However, large energy consumption for the desorption of CO2 is also associated with the process. To develop a separation [...] Read more.
The chemisorption process with amines is the major separation and recovery method of CO2 because of its high processing capacity and simplicity. However, large energy consumption for the desorption of CO2 is also associated with the process. To develop a separation and recovery process that is capable of desorbing CO2 at low temperatures and with minimal energy consumption, polymer hydrogels with a lower critical solution temperature (LCST) polymer network and amine groups immobilized in the polymer network of the hydrogels were exploited. Thermo-responsive amine gels with a series of hydrophobicity of polymer networks were systematically synthesized, and the influence of the hydrophobicity of the gels on the CO2 desorption temperature and cycle capacity (CO2 amount that can be separated and recovered by 1 cycle of temperature swing operation) was investigated using slurries with the series of gels. A significant decrease in the CO2 desorption temperature and increase in the cycle capacity occurred simultaneously by lowering the LCST of the gels via hydrophobisation of the polymer network. Based on an equilibrium adsorption model representing the CO2 separation and a recovery system with the gel slurries, an analysis of the system dynamics was performed in order to understand the recovery mechanism in the process. Full article
(This article belongs to the Special Issue Hydrogels and Gels for Biomedical and Sustainable Applications)
Show Figures

Graphical abstract

Back to TopTop