Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Authors = Yasuhiro Kuramitsu

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2407 KiB  
Article
The Role of Collision Ionization of K-Shell Ions in Nonequilibrium Plasmas Produced by the Action of Super Strong, Ultrashort PW-Class Laser Pulses on Micron-Scale Argon Clusters with Intensity up to 5 × 1021 W/cm2
by Igor Yu. Skobelev, Sergey N. Ryazantsev, Roman K. Kulikov, Maksim V. Sedov, Evgeny D. Filippov, Sergey A. Pikuz, Takafumi Asai, Masato Kanasaki, Tomoya Yamauchi, Satoshi Jinno, Masato Ota, Syunsuke Egashira, Kentaro Sakai, Takumi Minami, Yuki Abe, Atsushi Tokiyasu, Hideki Kohri, Yasuhiro Kuramitsu, Youichi Sakawa, Yasuhiro Miyasaka, Kotaro Kondo, Akira Kon, Akito Sagisaka, Koichi Ogura, Alexander S. Pirozhkov, Masaki Kando, Hiromitsu Kiriyama, Tatiana A. Pikuz and Yuji Fukudaadd Show full author list remove Hide full author list
Photonics 2023, 10(11), 1250; https://doi.org/10.3390/photonics10111250 - 10 Nov 2023
Cited by 3 | Viewed by 1937
Abstract
The generation of highly charged ions in laser plasmas is usually associated with collisional ionization processes that occur in electron–ion collisions. An alternative ionization channel caused by tunnel ionization in an optical field is also capable of effectively producing highly charged ions with [...] Read more.
The generation of highly charged ions in laser plasmas is usually associated with collisional ionization processes that occur in electron–ion collisions. An alternative ionization channel caused by tunnel ionization in an optical field is also capable of effectively producing highly charged ions with ionization potentials of several kiloelectronvolts when the laser intensity q > 1020 W/cm2. It is challenging to clearly distinguish the impacts of the optical field and collisional ionizations on the evolution of the charge state of a nonequilibrium plasma produced by the interaction of high-intensity, ultrashort PW-class laser pulses with dense matter. In the present work, it is shown that the answer to this question can be obtained in some cases by observing the X-ray spectral lines caused by the transition of an electron into the K-shell of highly charged ions. The time-dependent calculations of plasma kinetics show that this is possible, for example, if sufficiently small clusters targets with low-density background gas are irradiated. In the case of Ar plasma, the limit of the cluster radius was estimated to be R0 = 0.1 μm. The calculation results for argon ions were compared with the results of the experiment at the J-KAREN-P laser facility at QST-KPSI. Full article
(This article belongs to the Special Issue Atomic and Molecular Processes in Strong Laser Fields)
Show Figures

Figure 1

20 pages, 3315 KiB  
Article
Anticancer Effects of Fucoxanthin in a PDX Model of Advanced Stage Pancreatic Cancer with Alteration of Several Multifunctional Molecules
by Masaru Terasaki, Sally Suzuki, Takuji Tanaka, Hayato Maeda, Masaki Shibata, Kazuo Miyashita, Yasuhiro Kuramitsu, Junichi Hamada, Tohru Ohta, Shigehiro Yagishita, Akinobu Hamada, Yasunari Sakamoto, Susumu Hijioka, Chigusa Morizane and Mami Takahashi
Onco 2023, 3(4), 217-236; https://doi.org/10.3390/onco3040016 - 24 Sep 2023
Viewed by 2552
Abstract
Pancreatic cancer (PC) is one of the most fatal cancers, and there is an urgent need to develop new anticancer agents with fewer side effects for the treatment of this condition. A patient-derived xenograft (PDX) mouse model transplanted with cancer tissue from patients [...] Read more.
Pancreatic cancer (PC) is one of the most fatal cancers, and there is an urgent need to develop new anticancer agents with fewer side effects for the treatment of this condition. A patient-derived xenograft (PDX) mouse model transplanted with cancer tissue from patients is widely accepted as the best preclinical model for evaluating the anticancer potential of drug candidates. Fucoxanthin (Fx) is a highly polar carotenoid contained in edible marine brown algae and possesses anticancer activity. However, there is a lack of data on the effects of Fx in PDX models. We investigated the anticancer effects of Fx in PDX mice transplanted with cancer tissues derived from a patient with PC (PC-PDX) using comprehensive protein expression assay. Fx administration (0.3%Fx diet) ad libitum for 27 days significantly abrogated tumor development (0.4-fold) and induced tumor differentiation in PC-PDX mice, as compared to those in the control mice. Fx significantly upregulated the expression of non-glycanated DCN (2.4-fold), tended to increase the expressions of p-p38(Thr180/Tyr182) (1.6-fold) and pJNK(Thr183/Tyr185) (1.8-fold), significantly downregulated IGFBP2 (0.6-fold) and EpCAM (0.7-fold), and tended to decrease LCN2 (0.6-fold) levels in the tumors of the PC-PDX mice, as compared to those in the control mice. Some of the protein expression patterns were consistent with the in vitro experiments. That is, treatment of fucoxanthinol (FxOH), a prime metabolite derived from dietary Fx, enhanced non-glycanated DCN, p-p38(Thr180/Tyr182), and pJNK(Thr183/Tyr185) levels in human PC PANC-1 and BxPC-3 cells.These results suggested that Fx exerts anticancer and differentiation effects in a PC-PDX mice through alterations of some multifunctional molecules. Full article
Show Figures

Figure 1

7 pages, 2403 KiB  
Article
In-Target Proton–Boron Nuclear Fusion Using a PW-Class Laser
by Daniele Margarone, Julien Bonvalet, Lorenzo Giuffrida, Alessio Morace, Vasiliki Kantarelou, Marco Tosca, Didier Raffestin, Philippe Nicolai, Antonino Picciotto, Yuki Abe, Yasunobu Arikawa, Shinsuke Fujioka, Yuji Fukuda, Yasuhiro Kuramitsu, Hideaki Habara and Dimitri Batani
Appl. Sci. 2022, 12(3), 1444; https://doi.org/10.3390/app12031444 - 28 Jan 2022
Cited by 65 | Viewed by 26496
Abstract
Nuclear reactions between protons and boron-11 nuclei (p–B fusion) that were used to yield energetic α-particles were initiated in a plasma that was generated by the interaction between a PW-class laser operating at relativistic intensities (~3 × 1019 W/cm2) and [...] Read more.
Nuclear reactions between protons and boron-11 nuclei (p–B fusion) that were used to yield energetic α-particles were initiated in a plasma that was generated by the interaction between a PW-class laser operating at relativistic intensities (~3 × 1019 W/cm2) and a 0.2-mm thick boron nitride (BN) target. A high p–B fusion reaction rate and hence, a large α-particle flux was generated and measured, thanks to a proton stream accelerated at the target’s front surface. This was the first proof of principle experiment to demonstrate the efficient generation of α-particles (~1010/sr) through p–B fusion reactions using a PW-class laser in the “in-target” geometry. Full article
(This article belongs to the Special Issue Laser-Driven Accelerators, Radiations, and Their Applications)
Show Figures

Figure 1

9 pages, 1075 KiB  
Article
P. gingivalis Lipopolysaccharide Stimulates the Upregulated Expression of the Pancreatic Cancer-Related Genes Regenerating Islet-Derived 3 A/G in Mouse Pancreas
by Daichi Hiraki, Osamu Uehara, Yasuhiro Kuramitsu, Tetsuro Morikawa, Fumiya Harada, Koki Yoshida, Kozo Akino, Itsuo Chiba, Masahiro Asaka and Yoshihiro Abiko
Int. J. Mol. Sci. 2020, 21(19), 7351; https://doi.org/10.3390/ijms21197351 - 5 Oct 2020
Cited by 12 | Viewed by 3695
Abstract
Although epidemiological studies have shown a relationship between periodontal disease and pancreatic cancer, the molecular mechanisms involved remain unclear. In this study, the effects of systemic administration of Porphyromonas gingivalis lipopolysaccharide (PG-LPS) on gene expression were comprehensively explored in mouse pancreas that did [...] Read more.
Although epidemiological studies have shown a relationship between periodontal disease and pancreatic cancer, the molecular mechanisms involved remain unclear. In this study, the effects of systemic administration of Porphyromonas gingivalis lipopolysaccharide (PG-LPS) on gene expression were comprehensively explored in mouse pancreas that did not demonstrate any signs of inflammation. PG-LPS was prepared in physiological saline and intraperitoneally administered to male mice at a concentration of 5 mg/kg every 3 days for 1 month. After extracting total RNA from the excised mice pancreas, a comprehensive DNA microarray analysis of gene expression was performed. Tissue specimens were also subjected to hematoxylin–eosin staining and immunohistochemistry using anti-regenerating islet-derived 3A and G (Reg3A/G) antibody. ImageJ software was used to quantify the area of Reg3A/G positive cells in pancreatic islets by binarizing image date followed by area extraction. The results were compared using Mann–Whitney U test. Data are presented as mean ± standard deviation (SD) with p < 0.05 considered as significant. Reg3G, a gene related to pancreatic cancer, was one of the 10 genes with the highest levels of expression in the pancreas stimulated with PG-LPS. The comprehensive analysis revealed a 73-fold increase in Reg3G expression level in the PG-LPS group when compared with the control group; in addition, the expression level of Reg3A was increased by 11-fold in the PG-LPS group. Image analysis showed that the ratio of Reg3A/G positive cells was higher in the PG-LPS group than the control. Immunostaining showed the presence of Reg3A/G-positive cells in the alpha-cell equivalent areas around the islets of Langerhans in the PG-LPS group. These results support the notion that periodontal disease may be a risk factor for pancreatic cancer. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop