Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Authors = Yasir Abduljaleel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8417 KiB  
Article
Assessment of River Regime of Chenab River in Post-Chiniot Dam Project Scenario
by Yasir AbdulJaleel, Saleem Munawar, Muhammad Kaleem Sarwar, Faraz Ul Haq and Khawaja Bilal Ahmad
Water 2023, 15(17), 3032; https://doi.org/10.3390/w15173032 - 23 Aug 2023
Cited by 2 | Viewed by 3262
Abstract
Dams and reservoirs trap most sediments, and clear water can cause downstream riverbed degradation or aggradation. As a result, the river adjusts its dynamics and channel geometry to regain equilibrium between sediment supply and transport capacity. This study aimed to assess the river [...] Read more.
Dams and reservoirs trap most sediments, and clear water can cause downstream riverbed degradation or aggradation. As a result, the river adjusts its dynamics and channel geometry to regain equilibrium between sediment supply and transport capacity. This study aimed to assess the river regime of the Chenab River in the post-Chiniot Dam Project scenario using a one-dimensional numerical model. After calibration and validation using historic flows and river surveys, simulations were carried out for 5, 10, and 30 years. The sediment model was validated with Brune’s curve, which showed a Nash–Sutcliffe efficiency value of 0.734. The results showed that the river experienced continuous degradation of sediments for the first 16 years and showed a maximum erosion of 8 m at 680 m downstream of the dam. The reach experienced aggradation at 15 km downstream of the dam for the first 10 years and then became stable and showed a maximum deposition of 0.9 m. The ratio of sediments passed through the dam to sediments transported out of reach varied from 0.833 to 0.921, showing that the river reach would continue to attain equilibrium even after 30 years of reservoir operation. The study would be helpful for the prediction of possible future changes in the Chenab River. Full article
(This article belongs to the Special Issue Modelling and Numerical Simulation of Hydraulics and River Dynamics)
Show Figures

Figure 1

19 pages, 11780 KiB  
Review
Assessment of Subsurface Drainage Strategies Using DRAINMOD Model for Sustainable Agriculture: A Review
by Yasir Abduljaleel, Ahmed Awad, Nadhir Al-Ansari, Ali Salem, Abdelazim Negm and Mohamed Elsayed Gabr
Sustainability 2023, 15(2), 1355; https://doi.org/10.3390/su15021355 - 11 Jan 2023
Cited by 9 | Viewed by 4201
Abstract
Practicing agricultural drainage strategies is necessary to manage excess water in poorly drained irrigated agricultural lands to protect them from induced waterlogging and salinity problems. This paper provides an overview of subsurface drainage strategies and the modeling of their performance using the DRAINMOD [...] Read more.
Practicing agricultural drainage strategies is necessary to manage excess water in poorly drained irrigated agricultural lands to protect them from induced waterlogging and salinity problems. This paper provides an overview of subsurface drainage strategies and the modeling of their performance using the DRAINMOD model. Given that the DRAINMOD model considers a fixed value of the surface depression capacity (SDC) for the whole simulation period, which does not suit many agricultural practices, the paper then assesses the model’s performance under time-variable SDC. It was revealed that adopting a fixed value of SDC for the whole simulation period in the DRAINMOD model causes it to produce improper predictions of the water balance in farmlands characterized by time-variable SDC. Such a model drawback will also adversely impact its predictions of the nitrogen and phosphorus fate in farmlands, which represent major inputs when managing both the agricultural process and agricultural water quality. Researchers should pay attention when applying the DRAINMOD model to farmlands characterized by time-variable SDC. Moreover, it is recommended that the DRAINMOD input module be improved by considering changes in SDC during the simulation period to ensure better management of the agricultural process and agricultural water. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

24 pages, 4753 KiB  
Article
Identifying Cost-Effective Low-Impact Development (LID) under Climate Change: A Multi-Objective Optimization Approach
by Yasir Abduljaleel and Yonas Demissie
Water 2022, 14(19), 3017; https://doi.org/10.3390/w14193017 - 25 Sep 2022
Cited by 23 | Viewed by 3887
Abstract
Low-impact development (LID) is increasingly used to reduce stormwater’s quality and quantity impacts associated with climate change and increased urbanization. However, due to the significant variations in their efficiencies and site-specific requirements, an optimal combination of different LIDs is required to benefit from [...] Read more.
Low-impact development (LID) is increasingly used to reduce stormwater’s quality and quantity impacts associated with climate change and increased urbanization. However, due to the significant variations in their efficiencies and site-specific requirements, an optimal combination of different LIDs is required to benefit from their full potential. In this article, the multi-objective genetic algorithm (MOGA) was coupled with the stormwater management model (SWMM) to identify both hydrological and cost-effective LIDs combinations within a large urban watershed. MOGA iteratively optimizes the types, sizes, and locations of different LIDs using a combined cost- and runoff-related objective function under both past and future stormwater conditions. The infiltration trench (IT), rain barrel (RB), rain gardens (RG), bioretention (BR), and permeable pavement were used as potential LIDs since they are common in our study area—the city of Renton, WA, USA. The city is currently adapting different LIDs to mitigate the recent increase in stormwater system failures and flooding. The results from our study showed that the optimum combination of LIDs in the city could reduce the peak flow and total runoff volume by up to 62.25% and 80% for past storms and by13% and 29% for future storms, respectively. The findings and methodologies presented in this study are expected to contribute to the ongoing efforts to improve the performance of large-scale implementations of LIDs. Full article
Show Figures

Figure 1

21 pages, 11879 KiB  
Article
Evaluation and Optimization of Low Impact Development Designs for Sustainable Stormwater Management in a Changing Climate
by Yasir Abduljaleel and Yonas Demissie
Water 2021, 13(20), 2889; https://doi.org/10.3390/w13202889 - 15 Oct 2021
Cited by 23 | Viewed by 4821
Abstract
The increasing intensity and frequency of extreme storms pose a growing challenge to stormwater management in highly urbanized areas. Without an adequate and appropriate stormwater system, the storms and associated floods will continue to cause significant damage to infrastructure and loss of life. [...] Read more.
The increasing intensity and frequency of extreme storms pose a growing challenge to stormwater management in highly urbanized areas. Without an adequate and appropriate stormwater system, the storms and associated floods will continue to cause significant damage to infrastructure and loss of life. Low Impact Development (LID) has become an emerging alternative to the traditional stormwater system for stormwater management. This study evaluates and optimizes applications of different combinations of LIDs to minimize flows from a catchment under past and future storm conditions. The Storm Water Management Model (SWMM), forced by observed and downscaled precipitation from Coupled Model Intercomparison Project phase 6 (CMIP6), was used to simulate the runoff and apply the LIDs in the Renton City, WA. The final results show that the performance of LIDs in reducing total runoff volume varies with the types and combinations of LIDs utilized. A 30% to 75% runoff reduction was achieved for the past and future 50 year and 100 year storms. The study demonstrates the effectiveness of LID combinations with conventional stormwater systems to manage the future runoff in the study area, which is expected to increase by 26.3% in 2050. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

Back to TopTop