Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Authors = Xueqiu He

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3175 KiB  
Article
Creep Deformation Mechanisms of Gas-Bearing Coal in Deep Mining Environments: Experimental Characterization and Constitutive Modeling
by Xiaolei Sun, Xueqiu He, Liming Qiu, Qiang Liu, Limin Qie and Qian Sun
Processes 2025, 13(8), 2466; https://doi.org/10.3390/pr13082466 - 4 Aug 2025
Viewed by 143
Abstract
The impact mechanism of long-term creep in gas-containing coal on coal and gas outbursts has not been fully elucidated and remains insufficiently understood for the purpose of disaster engineering control. This investigation conducted triaxial creep experiments on raw coal specimens under controlled confining [...] Read more.
The impact mechanism of long-term creep in gas-containing coal on coal and gas outbursts has not been fully elucidated and remains insufficiently understood for the purpose of disaster engineering control. This investigation conducted triaxial creep experiments on raw coal specimens under controlled confining pressures, axial stresses, and gas pressures. Through systematic analysis of coal’s physical responses across different loading conditions, we developed and validated a novel creep damage constitutive model for gas-saturated coal through laboratory data calibration. The key findings reveal three characteristic creep regimes: (1) a decelerating phase dominates under low stress conditions, (2) progressive transitions to combined decelerating–steady-state creep with increasing stress, and (3) triphasic decelerating–steady–accelerating behavior at critical stress levels. Comparative analysis shows that gas-free specimens exhibit lower cumulative strain than the 0.5 MPa gas-saturated counterparts, with gas presence accelerating creep progression and reducing the time to failure. Measured creep rates demonstrate stress-dependent behavior: primary creep progresses at 0.002–0.011%/min, decaying exponentially to secondary creep rates below 0.001%/min. Steady-state creep rates follow a power law relationship when subject to deviatoric stress (R2 = 0.96). Through the integration of Burgers viscoelastic model with the effective stress principle for porous media, we propose an enhanced constitutive model, incorporating gas adsorption-induced dilatational stresses. This advancement provides a theoretical foundation for predicting time-dependent deformation in deep coal reservoirs and informs monitoring strategies concerning gas-bearing strata stability. This study contributes to the theoretical understanding and engineering monitoring of creep behavior in deep coal rocks. Full article
Show Figures

Figure 1

21 pages, 6191 KiB  
Article
Combined Prediction Model of Gas Concentration Based on Indicators Dynamic Optimization and Bi-LSTMs
by Yujie Peng, Dazhao Song, Liming Qiu, Honglei Wang, Xueqiu He and Qiang Liu
Sensors 2023, 23(6), 2883; https://doi.org/10.3390/s23062883 - 7 Mar 2023
Cited by 8 | Viewed by 2279
Abstract
In order to accurately predict the gas concentration, find out the gas abnormal emission in advance, and take effective measures to reduce the gas concentration in time, this paper analyzes multivariate monitoring data and proposes a new dynamic combined prediction method of gas [...] Read more.
In order to accurately predict the gas concentration, find out the gas abnormal emission in advance, and take effective measures to reduce the gas concentration in time, this paper analyzes multivariate monitoring data and proposes a new dynamic combined prediction method of gas concentration. Spearman’s rank correlation coefficient is applied for the dynamic optimization of prediction indicators. The time series and spatial topology features of the optimized indicators are extracted and input into the combined prediction model of gas concentration based on indicators dynamic optimization and Bi-LSTMs (Bi-directional Long Short-term Memory), which can predict the gas concentration for the next 30 min. The results show that the other gas concentration, temperature, and humidity indicators are strongly correlated with the gas concentration to be predicted, and Spearman’s rank correlation coefficient is up to 0.92 at most. The average R2 of predicted value and real value is 0.965, and the average prediction efficiency R for gas abnormal or normal emission is 79.9%. Compared with the other models, the proposed dynamic optimized indicators combined model is more accurate, and the missing alarm of gas abnormal emission is significantly alleviated, which greatly improves the early alarming accuracy. It can assist the safety monitoring personnel in decision making and has certain significance to improve the safety production efficiency of coal mines. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

20 pages, 11046 KiB  
Article
Research on Deformation and Failure Law of the Gob-Side Roadway in Close Extra-Thick Coal Seams
by Shengquan He, Le Gao, Bin Zhao, Xueqiu He, Zhenlei Li, Dazhao Song, Tuo Chen, Yanran Ma and Feng Shen
Sustainability 2023, 15(3), 2710; https://doi.org/10.3390/su15032710 - 2 Feb 2023
Cited by 3 | Viewed by 2077
Abstract
To reveal the deformation and failure law of the gob-side roadway (GSR) and the main influencing factors in close extra-thick coal seams, the research methods of field monitoring, theoretical analysis, and numerical simulation are adopted in this paper. Field monitoring data shows that [...] Read more.
To reveal the deformation and failure law of the gob-side roadway (GSR) and the main influencing factors in close extra-thick coal seams, the research methods of field monitoring, theoretical analysis, and numerical simulation are adopted in this paper. Field monitoring data shows that microseismic events occur and accumulate frequently in the surrounding rock and some overlying key layers of the GSR. Large deformation is experienced in the middle part of roadway near the solid coal side, the middle and upper parts of the roadway near the coal pillar side, and the roadway floor. The overlying strata of the GSR are fractured to form a composite structure as “low-level cantilever beam and high-level masonry beam”. The coal pillar is squeezed and effected by the composite beam structure and the rotation moment M, causing serious bulge in middle and upper part of the coal pillar side. The stability of the solid coal side of the roadway is affected by the stress transferred from gangue contact point. Numerical simulation shows that the immediate roof and key layer breakage are induced by the mining of the 30,501 working face. Shear and tension failures happen in the GSR due to overburden subsidence and rotary extrusion. The stress and displacement at the middle and upper of the roadway on the coal pillar side are larger than the other area. Compared with the solid coal side, the coal on the coal pillar side is obviously more fractured, with a lower bearing capacity. The peak stress in the coal pillar shows up 2 m away from the roadway, which is close to the length of bolt support. The mining-induced stress and the stress transferred from gangue contact point are the direct reasons for solid coal bulge beside the roadway. The peak stress on the solid coal side is located 7 m away from the roadway, at the gangue contact point where overburden fractures. The overburden strata loads and the transferred stress near the gangue contact point are transferred from the sides to the roadway floor. Their coupling effect with the in situ horizontal stress acts as the force source for the plastic floor heave. Full article
(This article belongs to the Collection Mine Hazards Identification, Prevention and Control)
Show Figures

Figure 1

27 pages, 11062 KiB  
Article
Seawater Intrusion Risk and Prevention Technology of Coastal and Large-Span Underground Oil Storage Cavern
by Shengquan He, Dazhao Song, Lianzhi Yang, Xiaomeng Miao, Jiuzheng Liang, Xueqiu He, Biao Cao, Yingjie Zhao, Tuo Chen, Wei Zhong and Taoping Zhong
Energies 2023, 16(1), 339; https://doi.org/10.3390/en16010339 - 28 Dec 2022
Viewed by 1867
Abstract
The presence of a high concentration of Cl in saltwater will erode the structure and facilities, reducing the stability and service life of the underground oil storage cavern. In order to reduce the risk of seawater intrusion, this paper studies the risk [...] Read more.
The presence of a high concentration of Cl in saltwater will erode the structure and facilities, reducing the stability and service life of the underground oil storage cavern. In order to reduce the risk of seawater intrusion, this paper studies the risk and prevention technology of seawater intrusion based on a case study of a coastal and large-span underground oil storage cavern. A refined three-dimensional hydrogeological model that comprehensively considers permeability coefficient partitions, faults, and fractured zones are constructed. The seepage fields and seawater intrusion risks of the reservoir site in its natural state, during construction, and during operation are examined, respectively. The study quantifies the water inflow and optimizes the seawater intrusion prevention technology. The results indicate that there is no risk of seawater incursion into the cavern under natural conditions. The water inflows after excavating the top, middle, and bottom sections of the main cavern are predicted to be 6797 m3/day, 6895 m3/day, and 6767 m3/day, respectively. During the excavation period, the water supply from the water curtain system is lower than the water inflow of the cavern, providing the maximum water curtain injection of 6039 m3/day. The water level in the reservoir area decreased obviously in the excavation period, but the water flow direction is from the cavern to the sea. Additionally, the concentration of Cl in the cavern area is less than 7 mol/m3; hereby, there are no seawater intrusion risks. When only the horizontal water curtain system is deployed, seawater intrusion occurs after 18 years of cavern operation. The concentration of Cl in the southeast of the cavern group exceeds 50 mol/m3 in 50 years, reaching moderate corrosion and serious seawater intrusion. In addition to the horizontal curtain above the cavern, a vertical water curtain system could be added on the southeast side, with a borehole spacing of 10 m and extending to 30 m below the cavern group. This scheme can effectively reduce seawater intrusion risk and extend the service life of the cavern. The findings of this research can be applied as guidelines for underground oil storage caverns in coastal areas to tackle seawater intrusion problems. Full article
Show Figures

Figure 1

22 pages, 5134 KiB  
Article
Applying Machine Learning and Automatic Speech Recognition for Intelligent Evaluation of Coal Failure Probability under Uniaxial Compression
by Honglei Wang, Zhenlei Li, Dazhao Song, Xueqiu He and Majid Khan
Minerals 2022, 12(12), 1548; https://doi.org/10.3390/min12121548 - 30 Nov 2022
Cited by 4 | Viewed by 2025
Abstract
Acoustic emission (AE) monitoring is an effective tool to quantify the dynamic damage that may cause heavy casualties and huge property losses in rock engineering. Instead of traditional failure evaluation methods, in this paper, the coal failure mechanism is evaluated in a complicated [...] Read more.
Acoustic emission (AE) monitoring is an effective tool to quantify the dynamic damage that may cause heavy casualties and huge property losses in rock engineering. Instead of traditional failure evaluation methods, in this paper, the coal failure mechanism is evaluated in a complicated geological environment under uniaxial compression tests by employing machine learning (ML) and automatic speech recognition (ASR). Taking advantage of the ASR technology, the Mel-frequency cepstrum coefficients (MFCC) were extracted as sample features, while ML was used to paradigm the artificial intelligent evaluation of the failure probability of coal (AIEFPC). Additionally, the five-fold cross-validation method was used to assess the AIEFPC predictive effect incorporating cumulative hits number, cumulative ring count, and amplitude as sample features. The influence of category weight on the prediction effect of AIEFPC on a different category of sample sets has been discussed and analyzed. The results show that AIEFPC has the potential to use the MFCC of the 40 ms AE segment at any time to predict the dangerous state of the coal sample with a prediction accuracy of >85%. The probability value of the hazardous samples is computed through AIEFPC that further helped in evaluating the reliability of the prediction results. It is inferred from the obtained results that a larger category weight value of the hazardous samples can improve the prediction accuracy of AIEFPC than the safe sample. This research provides a new way of effectively predicting the coal failure probability before the damage and failure that can be applied to worldwide case-studies. Full article
Show Figures

Figure 1

23 pages, 10890 KiB  
Article
Research on Deformation and Failure Control Technology of a Gob-Side Roadway in Close Extra-Thick Coal Seams
by Bin Zhao, Shengquan He, Xueqiu He, Le Gao, Zhenlei Li, Dazhao Song and Feng Shen
Sustainability 2022, 14(18), 11246; https://doi.org/10.3390/su141811246 - 8 Sep 2022
Cited by 7 | Viewed by 1802
Abstract
Close extra-thick coal seams are subject to the broken overburden of mined coal seams, and the deformation and damage of the roadways is serious, which affects the safe operation of the mine. To reduce the deformation and damage of the roadways, this paper [...] Read more.
Close extra-thick coal seams are subject to the broken overburden of mined coal seams, and the deformation and damage of the roadways is serious, which affects the safe operation of the mine. To reduce the deformation and damage of the roadways, this paper studied the deformation and damage law of the gob-side roadway in close extra-thick coal seams through numerical simulation and field monitoring, compared and analyzed the deformation and damage characteristics of the roadway under different reinforcement support methods, determined the optimal reinforcement support method, and carried out field verification. The obtained results indicated that the deformation and damage of the gob-side roadway showed asymmetric characteristics. The large deformation of the coal body in the deep part of the roadway wall is an important reason for the continuous occurrence of roadway wall heave in the coal pillar. Under the action of unbalanced support pressure, the floor is subject to the coupling effect of horizontal extrusion pressure and vertical stress that cause extrusion mobility floor heave. The horizontal and vertical displacement of the coal pillar side of the roadway under different support methods is much larger than that of the solid coal side. Increasing the anchor cable length and fan-shaped arrangement can improve the support effect. Grouting at the coal pillar side can significantly improve the bearing capacity and stability of the coal pillar. The effect of floor grouting is much better than the anchor cable in controlling the floor heave. The integrated reinforcement method of anchor cable + coal pillar side grouting + floor grouting has the best effect with the least horizontal and vertical deformation. The research results are of great significance for ensuring the stability of similarly endowed roadways. Full article
(This article belongs to the Collection Mine Hazards Identification, Prevention and Control)
Show Figures

Figure 1

16 pages, 9180 KiB  
Article
Dynamic Propagation and Electro-Mechanical Characteristics of New Microcracks in Notched Coal Samples Studied by the Three-Point Bending Test System and AFM
by Weixiang Wang, Dazhao Song, Xueqiu He, Qingxia Liu, Zhenlei Li, Liming Qiu and Guodong Mei
Minerals 2022, 12(5), 582; https://doi.org/10.3390/min12050582 - 5 May 2022
Cited by 2 | Viewed by 1978
Abstract
This work extends research on the mechanism of electromagnetic radiation (EMR) induced by coal or rock fractures to the category of microscopic dynamic experimental research. A custom-made three-point bending test system and atomic force microscope (AFM) were integrated to obtain the microdynamic loading [...] Read more.
This work extends research on the mechanism of electromagnetic radiation (EMR) induced by coal or rock fractures to the category of microscopic dynamic experimental research. A custom-made three-point bending test system and atomic force microscope (AFM) were integrated to obtain the microdynamic loading test system. The notched coal samples were prepared specially. The dynamic propagation of new microcracks in coal samples was measured, and the propagation velocity was calculated. The morphology and electro-mechanical characteristics of new microcracks were tested. More importantly, the causes of the changes in the electro-mechanical characteristics before and after fracture were analyzed, and the effects of these changes on the EMR were discussed. The results showed that the average propagation velocities during the same time interval are 9.5 μm/s, 12.1 μm/s, and 16.2 μm/s. The elastic modulus of the material at the microcrack edge is generally smaller than that of the material in other locations, while the adhesion and deformation are larger. Moreover, the closer the material is to the microcrack, the higher its surface potential. The electrons generated at the microcrack edge and emitted into the atmosphere, which made the greater potentials of the microcrack edge. Many electrons with different velocities and directions migrate in similar parallel-plate capacitors, which are formed by the relative microscale surface of the coal microcrack tip and have different field strengths, resulting in EMR with complex frequencies and different intensities. This study provides a micro-dynamic experimental basis for research on the electromagnetic radiation mechanism. Full article
Show Figures

Figure 1

17 pages, 5232 KiB  
Article
Study on the Nonlinear Characteristics of EMR and AE during Coal Splitting Tests
by Liming Qiu, Yi Zhu, Dazhao Song, Xueqiu He, Weixiang Wang, Yang Liu, Yuzhe Xiao, Menghan Wei, Shan Yin and Qiang Liu
Minerals 2022, 12(2), 108; https://doi.org/10.3390/min12020108 - 19 Jan 2022
Cited by 58 | Viewed by 3208
Abstract
Coal and rock dynamic disasters have been the main concern in underground engineering because these seriously threaten the safety of miners and industrial production. Aiming to improve the EMR and AE monitoring technology, the refined nonlinear characteristics of EMR and AE during coal [...] Read more.
Coal and rock dynamic disasters have been the main concern in underground engineering because these seriously threaten the safety of miners and industrial production. Aiming to improve the EMR and AE monitoring technology, the refined nonlinear characteristics of EMR and AE during coal splitting failure are studied using Hilbert-H and multifractal theory, and valuable information pertaining to coal fracture law contained in EMR and AE waveform was revealed. The results show that the EMR and AE of coal splitting failure are related to the process of coal crack propagation. They possess the same initiation time and frequency band, however, the signal duration of EMR is comparatively longer than AE, and the main frequency of AE is higher than EMR. The EMR of coal splitting failure has the same excitation source as AE; nonetheless, the excited forms display different behavior. In terms of signal duration, the distribution of EMR signal is relatively uniform, the proportion of large-signal is less, the amount of information is more than that of AE, and the multifractal characteristics are more complicated. During the coal splitting failure, AE is mainly generated in the process of wall vibration caused by crack propagation, while the generation of EMR includes piezoelectric effect, charge separation, free charge vibration, charge neutralization and other processes, making EMR more complicated than AE and has a relatively low frequency. The research provides an effective method for studying nonlinear refinement characteristics of coal EMR and AE, and can provide an important basis for the study of the mechanism of EMR generation. Full article
Show Figures

Figure 1

15 pages, 1456 KiB  
Article
An Intelligent Rockburst Prediction Model Based on Scorecard Methodology
by Honglei Wang, Zhenlei Li, Dazhao Song, Xueqiu He, Aleksei Sobolev and Majid Khan
Minerals 2021, 11(11), 1294; https://doi.org/10.3390/min11111294 - 22 Nov 2021
Cited by 9 | Viewed by 3045
Abstract
Rockburst is a serious hazard in underground engineering, and accurate prediction of rockburst risk is challenging. To construct an intelligent prediction model of rockburst risk with interpretability and high accuracy, three binary scorecards predicting different risk levels of rockburst were constructed using ChiMerge, [...] Read more.
Rockburst is a serious hazard in underground engineering, and accurate prediction of rockburst risk is challenging. To construct an intelligent prediction model of rockburst risk with interpretability and high accuracy, three binary scorecards predicting different risk levels of rockburst were constructed using ChiMerge, evidence weight theory, and the logistic regression algorithm. An intelligent rockburst prediction model based on scorecard methodology (IRPSC) was obtained by integrating the three scorecards. The effects of hazard sample category weights on the missed alarm rate, false alarm rate, and accuracy of the IRPSC were analyzed. Results show that the accuracy, false alarm rate, and missed alarm rate of the IRPSC for rockburst prediction in riverside hydropower stations are 75%, 12.5%, and 12.5%, respectively. Setting higher hazard sample category weights can reduce the missed alarm rate of IRPSC, but it will lead to a higher false alarm rate. The IRPSC can adaptively adjust the threshold and weight value of the indicator and convert the abstract machine learning model into a tabular form, which overcomes the commonly black box problems of machine learning model, as well as is of great significance to the application of machine learning in rockburst risk prediction. Full article
Show Figures

Figure 1

27 pages, 22223 KiB  
Article
Microseismic Temporal-Spatial Precursory Characteristics and Early Warning Method of Rockburst in Steeply Inclined and Extremely Thick Coal Seam
by Zhenlei Li, Shengquan He, Dazhao Song, Xueqiu He, Linming Dou, Jianqiang Chen, Xudong Liu and Panfei Feng
Energies 2021, 14(4), 1186; https://doi.org/10.3390/en14041186 - 23 Feb 2021
Cited by 21 | Viewed by 2605
Abstract
Early warning of a potential rockburst risk and its area of occurrence helps to take effective and targeted measures to mitigate rockburst hazards. This study investigates the microseismic (MS) spatial-temporal precursory characteristic parameters in a typical steeply inclined and extremely thick coal seam [...] Read more.
Early warning of a potential rockburst risk and its area of occurrence helps to take effective and targeted measures to mitigate rockburst hazards. This study investigates the microseismic (MS) spatial-temporal precursory characteristic parameters in a typical steeply inclined and extremely thick coal seam (SIETCS) with high rockburst risk and proposes three spatial/temporal quantification parameters and a spatial-temporal early warning method. Analysis results of temporal parameters show that the sharp-rise-sharp-drop variation in total daily energy and event count can be regarded as a precursor for high energy tremor. The appearance of peak values of both energy deviation (≥20) and event count deviation (≥1) can be regarded as precursors that indicate imminent rockburst danger. A laboratory acoustic emission (AE) experiment reveals that precursor characteristics obtained from the study can be feasibly used to warn the rockburst risk. The spatial evolution laws of spatial parameters show that the high energy density index of MS (EDIM), velocity, velocity anomaly regions correlate well with stress concentration and rockburst risk areas. The field application verifies that the temporal-spatial early warning method can identify the potential rockburst risk in a temporal sequence and rockburst risk areas during the temporal early warning period. Full article
Show Figures

Figure 1

26 pages, 11235 KiB  
Article
Mechanism and Prevention of Rockburst in Steeply Inclined and Extremely Thick Coal Seams for Fully Mechanized Top-Coal Caving Mining and Under Gob Filling Conditions
by Shengquan He, Dazhao Song, Zhenlei Li, Xueqiu He, Jianqiang Chen, Taoping Zhong and Quan Lou
Energies 2020, 13(6), 1362; https://doi.org/10.3390/en13061362 - 15 Mar 2020
Cited by 32 | Viewed by 3530
Abstract
The steeply inclined and extremely thick coal seams (SIETCS) under the condition of gob filling frequently suffer from the occurrence of rockbursts. Figuring out the mechanisms of rockbursts under this condition for taking targeted measures to mitigate rockburst hazards in SIETCS is of [...] Read more.
The steeply inclined and extremely thick coal seams (SIETCS) under the condition of gob filling frequently suffer from the occurrence of rockbursts. Figuring out the mechanisms of rockbursts under this condition for taking targeted measures to mitigate rockburst hazards in SIETCS is of great significance. Using the typical SIETCS with an average dip angle of 87° at Wudong Coal Mine (WCM) as a case study, a mechanical model and elastic deformation energy (EDE) function of a “steeply inclined suspended roof structure” was developed, and the influence factors were analyzed by theoretical analysis. Simultaneously, the rockburst risk assessment was carried out based on the theory of a rockburst start-up. The pressure relief measures are optimized by comparing the pressure relief effects of three kinds of destress blasting schemes. The results indicate that the damage characteristics of rockburst are mainly floor heave, the sidewall’s inward deformation and roof subsidence. The damage degree of headentry on the roof side is more severe than that of tailentry, and the resultant impacts showed the directionality from the roof side to the coal side. The steeply inclined and suspended roof breakage is one of the main causes for the occurrence of rockbursts. The EDE of the roof increases with an increasing dip angle of the coal seam from 0° to 72.6° and then decreases as the dip angle increases. Furthermore, that increase is accompanied by the decrease of the lateral pressure coefficient and the supporting force coefficient. The EDE stored in the roof is sufficient to cause roof breakage and induce rockburst after the complete roof exceeds a certain length. The mechanism of rockburst in SIETCS for fully mechanized top-coal caving mining under gob filling conditions was proposed, i.e., “high compressive stress concentration plus breakage of the suspended roof-induced stress” rockburst, and this is further verified by ground destruction, microseismic (MS) monitoring and numerical modeling. The results also indicate that alternate deep and shallow hole-blasting modes are more suitable for pressure relief in SIETCS. Full article
Show Figures

Figure 1

10 pages, 1852 KiB  
Article
Analysis of Energy Accumulation and Dissipation of Coal Bursts
by Xiaohan Yang, Ting Ren, Alex Remennikov, Xueqiu He and Lihai Tan
Energies 2018, 11(7), 1816; https://doi.org/10.3390/en11071816 - 11 Jul 2018
Cited by 10 | Viewed by 3119
Abstract
Coal bursts are a serious dynamic hazard for underground coalmines, and they attract the extensive interest of studies from mining and geotechnical researchers worldwide. More recently, coal-burst incidents were reported in some Australian coalmines as a result of inadequate geological assessment of coal-burst [...] Read more.
Coal bursts are a serious dynamic hazard for underground coalmines, and they attract the extensive interest of studies from mining and geotechnical researchers worldwide. More recently, coal-burst incidents were reported in some Australian coalmines as a result of inadequate geological assessment of coal-burst hazards. The coal-burst process is closely associated with the accumulation of elastic energy and the rapid dissipation of kinetic energy. This paper introduces the essential geological conditions for energy accumulation, and the likely precursors for rapid energy dissipation leading to coal burst, which can be used by Australian coalmines to determine their coal-burst risk accordingly. Different energy forms and their transformations during the coal-burst process are introduced in detail in this paper. The dominant geological factors resulting in the accumulation of massive energy are analyzed, and the likely precursors associated with the instant release of elastic energy are discussed. Full article
(This article belongs to the Section I: Energy Fundamentals and Conversion)
Show Figures

Figure 1

Back to TopTop