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Abstract: Rockburst is a serious hazard in underground engineering, and accurate prediction of
rockburst risk is challenging. To construct an intelligent prediction model of rockburst risk with
interpretability and high accuracy, three binary scorecards predicting different risk levels of rockburst
were constructed using ChiMerge, evidence weight theory, and the logistic regression algorithm.
An intelligent rockburst prediction model based on scorecard methodology (IRPSC) was obtained by
integrating the three scorecards. The effects of hazard sample category weights on the missed alarm
rate, false alarm rate, and accuracy of the IRPSC were analyzed. Results show that the accuracy, false
alarm rate, and missed alarm rate of the IRPSC for rockburst prediction in riverside hydropower
stations are 75%, 12.5%, and 12.5%, respectively. Setting higher hazard sample category weights can
reduce the missed alarm rate of IRPSC, but it will lead to a higher false alarm rate. The IRPSC can
adaptively adjust the threshold and weight value of the indicator and convert the abstract machine
learning model into a tabular form, which overcomes the commonly black box problems of machine
learning model, as well as is of great significance to the application of machine learning in rockburst
risk prediction.

Keywords: rockburst; scorecard; intelligence prediction; interpretability; class weights; machine learning

1. Introduction

Rockburst is a phenomenon caused by mining unloading, in which the internal
elasticity of the rock is suddenly released, resulting in bursting, spalling, spraying, and
throwing of material [1–3]. Rockburst is a very serious hazard that can cause damage
to mining equipment, roadway failure, injuries, and seismic activity [4,5]. The study
of methods for predicting rockburst is of great importance to underground and mining
engineering, and the establishment of effective rockburst prediction models will be of great
help to engineering construction [6,7]. However, rockburst is a complex phenomenon,
influenced by numerous factors such as rock properties, geological formations, ground
stresses, and extraction activities, making rockburst prediction difficult, and effectively
predicting rockburst remains a serious challenge [8,9].

In general, rockburst prediction methods can be divided into two categories: the
empirical approach and mathematical models, with mathematical models divided into
uncertainty theory algorithmic models and machine learning models [8,9]. The empirical
approach assesses rockburst risk by analyzing the phenomenon in terms of stress/strength,
brittleness, energy, and depth [10–14]. The most outstanding advantages of the empirical
approach are simplicity and operability, which have been widely used in the identification
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of rockburst risk in underground engineering [15,16]. Indicator thresholds are generally de-
termined by experts using the results of data analysis and engineering experience; however,
due to the suddenness and complexity of rockburst, the thresholds for rockburst occurrence
under different geological conditions are generally different and accurately determining
thresholds is difficult. In response to the random and fuzzy nature of the factors affecting
rockburst, a series of uncertainty theory algorithms such as rough set theory [1], grey
systems [17], attribute identification models [18], the split-source weighting method [19],
and the fuzzy comprehensive evaluation method [20] have been used in rockburst rating
prediction. However, uncertainty theory algorithms suffer from subjectivity and incon-
sistency for rockburst prediction [21]. Different models are proposed based on different
geological conditions and are highly specific and difficult to apply to multiple projects.
The factors affecting rockburst are non-linear, and artificial intelligence algorithms excel at
non-linear analysis with high-dimensional data. Artificial neural networks (ANN), support
vector machines (SVM), K-nearest neighbors (KNN), classification and regression trees
(CART), random forests (RF), and ensemble learning can effectively predict rockburst [22].
Li and Jimenez [23] proposed a method for predicting rockburst by using logistic regression.
ANN and improved ANN are the most widely used in rockburst risk prediction. Feng
and Wang [24] described a new method for predicting rockburst in underground tunnels
based on ANN and adaptive identification. A new improved ANN model was successfully
introduced to predict rockburst risk in deep gold mines in South Africa [25]. Machine learn-
ing used in rockburst risk prediction generally has a high accuracy. Nevertheless, taking
practical engineering problems into consideration, we believe that the proposed model can
provide a strong basis for accurate rockburst prediction, as well as assist in understanding
and improving the rockburst risk indicator. Furthermore, the proposed model has both
high prediction ability and interpretability. In general, machine learning-based models
are sensitive to the induced irrelevant features and decrepit to the outliers. Additionally,
due to the presence of black box properties in some of the machine learning models, the
prediction process is quite complex and has poor interpretability [26].

The scorecard is not only easy to operate but also highly interpretable [27–29]. Scorecard
modeling theory is a general modeling framework. Logistic regression (LR), SVM, and
ANN can be used in the scorecard modeling process, among which logistic regression
is the most used scorecard construction algorithm. The scorecard model only requires
the scorecard to score the predicted samples and then judge the attributes of the samples
according to the total score of the samples. It can not only determine the prediction results,
but also directly observe the impact of each feature on the results. The scorecard is a strong
interpretability model with a simple and controllable prediction process, as well as the
ability to adjust adaptively to the dataset. The scorecard model in a bank lending scenario
can measure a customer’s credit risk in the form of a score. The higher the score scored
by the scorecard, the higher the chances that the customer is a quality customer and the
lower the risk of borrowing [27]. The scorecard model is ideal for use in the financial sector.
However, a study on the literature regarding the application of the scorecard model in
rockburst risk prediction has not been reported, and further research is needed on the
application of the scorecard model in rockburst risk prediction.

In order to build a rockburst prediction model with high accuracy and identify the
primary factors affecting the rockburst risk level, an intelligent rockburst prediction model
based on scorecard methodology (IRPSC) was constructed using 311 real rockburst cases,
and the model was used to predict rockburst cases in riverside hydropower stations
to verify the application effect of the IRPSC. Next, the prediction effects of the IRPSC
and machine learning models such as LR, CART, RF, and AdaBoost are compared and
analyzed [30]. Finally, the influence of sample category weight on the missing alarm rate,
false alarm rate, and accuracy of rockburst risk scorecard was studied. The results have
important implications for the application of machine learning in rockburst risk prediction,
as well as improving the accuracy of rockburst predictions.
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2. Methods
2.1. Establishment of the Intelligent Rockburst Risk Prediction Model

The establishment of the IRPSC consists of three main steps. First, through combining
rockburst cases based on risk level, the data sets of different classification tasks are obtained.
Then, the scorecards for evaluating different rockburst risk levels were constructed based
on the data sets using ChiMerge, weights of evidence (WOE), and LR. Finally, the IRPSC
was constructed by integrating the scorecards.

Rockburst risk is generally classified as none, light, moderate, or strong, based on
the probability and severity of the rockburst (Figure 1) [30]. Rockburst risk prediction
is a multi-classification problem, and one versus one (OVO) and one versus all (OVA)
are two commonly used approaches for multi classification problems [31]. Fernández
compared OVO and OVA by methods of ad-hoc learning algorithms and concluded that
OVO outperformed OVA [32,33]. All sample categories are independent of each other
when using the OVO and OVA approaches, but the rockburst risk levels are sequential,
i.e., the four levels of none, light, moderate, and strong have increasing levels of danger in
that order.

In this paper, the sequence of the rockburst risk is taken into account in the task
decomposition. (I) Dataset S1 is based on samples with light, moderate, or strong rockburst
risk as the hazard samples, and samples with no rockburst risk are the safety samples.
(II) Dataset S2 is based on samples with moderate or strong rockburst risk as the hazard
sample, and samples with no or light rockburst risk as the safety sample. (III) Dataset S3 is
based on samples with strong rockburst risk as the hazard sample, and samples with no,
light or moderate rockburst risk as the safety sample. Rockburst risk scorecard f 1, f 2, and
f 3 were constructed using datasets S1, S2, and S3, respectively. This step is the core of the
model construction, and the scorecard construction process for rockburst risk prediction is
described in detail in Section 2.2.

The IRPSC consists of three scorecards, which are used in turn to predict rockburst
cases. (I) If the scorecard f 3 predicts the case to be a hazardous sample, the IRPSC predicts
the rockburst risk level of strong. (II) If scorecard f 3 predicts the case to be a safe sample,
and scorecard f 2 predicts the case to be a hazardous sample, the IRPSC predicts that the
rockburst risk level of medium; (III) If scorecard f 3 and f 2 predict the case to be a safe
sample, and scorecard f 1 predicts the case to be a hazardous sample, the IRPSC predicts
that the rockburst risk level of light; (IV) If all three scorecards predict the case to be a safe
sample, the IRPSC predicts a rockburst risk level of none.

2.2. Construction of the Rockburst Risk Prediction Scorecard

Like the comprehensive index method commonly used for rockburst risk assessment,
the rockburst risk scorecard first discretizes each indicator and assigns a score to each bin,
and then analyzes the sample qualitatively and quantitatively by calculating the score
(Figure 1). The rockburst risk scorecard scores cases as the sum of the sample indicator
scores and the base score of the scorecard. Using the scorecard to score the sample, the
category of the sample based on the total score of the sample can be determined. Using the
scorecard model to predict the rockburst risk of a case not only gives the prediction results,
but also directly gives the impact of each indicator on the results [28,34].
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The score given by the scorecard to rockburst cases has a linear relationship with the
odds of a rockburst case [28,35].

score =
M

∑
i=0

Θ

∑
j=1

sijδij = A− B log(Odds) (1)



Minerals 2021, 11, 1294 5 of 15

where score denotes the score of the case scored by the scorecard, sij denotes the score of the
jth bin of ith indicator, δij is a binary variable, δij = 1 when the value xi of the i-th indicator
of the rockburst case satisfies lij < xi < hij, and δij = 0 if the value of the indicator is not
within the j-th box. Θ denotes the number of the i-th risk indicator interval, M is the total
number of indicators of sample cases. A and B are constants and the constant A is referred
to as the compensation factor and the constant B as the scorecard scale. Odds is the ratio of
the probability that a case is a safety sample to the probability that it is a hazard sample.
The expression for Odds is:

Odds =
p

1− p
(2)

where p denotes the probability that a case is safety samples, and the probability that it is
hazard sample is 1 − p.

The construction of a rockburst risk scorecard based on ChiMerge, WOE and a LR
requires the conversion of rockburst risk indicators into dimensionless WOE values and
the assumption that the WOE values satisfy a logit relationship with the probability p
(Figure 1).

p =
e

M
∑

i=1
θiwijσij+b

1 + e

M
∑

i=1
θiwijσij+b

(3)

where, θi is the weight of the ith indicator, wij is the WOE of the jth bin of ith indicator, b is
the model coefficient, determined by the LR model training process.

By combining Equations (1)–(3), the score given by the scorecard to the rockburst case is:

score = A− B

(
M

∑
i=1

Θ

∑
j=1

θiwijδij + b

)
(4)

From the above analysis, constructing a dichotomous rockburst risk scorecard consists
of four main steps. At first, the threshold value for each indicator bin is obtained by
employing ChiMerge that bins each risk indicator. Then, using WOE theory, the weights
of evidence are calculated for each bin as represented by wij. The weight of indicators θ is
estimated using the maximum likelihood method of the LR model. Finally, the values for
the compensation factor A and the scorecard scale B are computed.

2.2.1. Binning of Indicators

The discretization of the indicators using the binning method is the first step in the
construction of a rockburst risk scorecard. The binning for indicators has three advantages.
(I) The indicators after binning are more robust compared to abnormal data. (II) LR is a
generalized linear model with limited expressiveness. After the indicators are discretized
into Θ bins, each bin has a separate WOE value, which is equivalent to introducing non-
linearity to the model and can improve the expressiveness of the model. (III) Indicator
discretization plays a role in simplifying the model and reducing the risk of over-fitting.

ChiMerge is a commonly used supervised binning method proposed by Kerber in
1992 [36], which is used to good effect in the scorecard production process. ChiMerge is
a bottom-up data discretization method that combines adjacent bins with minimum χ2

statistic values until a defined stopping criterion is satisfied. In this paper, ChiMerge is
used as the discretization method for the risk assessment indicators to obtain the critical
values lij, hij for each bin of the risk assessment indicators.

2.2.2. Determination of the Weight of Evidence for Each Bin

The indicators used to predict rockburst risk generally have different physical units,
and the values of the different indicators vary significantly and cannot be summed directly;
therefore, a characteristic transformation of the indicators into dimensionless indicators
is required to produce the rockburst risk scorecard. A conversion of the indicators into
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WOE values was used to produce the scorecard. The WOE reflects the variability in the
proportion of hazard and safety samples in each bin of the indicator [37]. The WOE value
wij for the j-th bin of the i-th rockburst risk indicator is [38,39].

wij = ln

(
pj

1

pj
0

)
(5)

where pj
1 is the hazard sample rate for the j-th bin of the i-th indicator, which represents

the ratio of the number of dangerous samples in the j-th bin of the i-th indicator to the total
number of dangerous samples in the sample set, and pj

0 is the safety sample rate for the
j-th bin of the i-th indicator.

2.2.3. Determination of Each Weight’s Indicator

Using the maximum likelihood method to estimate the weight values θ for each
indicator, the likelihood function of the LR is [40,41]:

N

∏
i=1

pyi (1− p)1−yi (6)

where N denotes the total number of the training set {W i, yi}, yi is the case label, yi∈{0,1},
I = 1,2,...,N.

The log-likelihood function is [40,41]:

L(θ) =
N

∑
i=1

−yi

(
M

∑
i=1

θiwijσij + b

)
+ ln

1 + e

M
∑

i=1
θiwijσij+b

 (7)

where, L(θ) is the logarithmic loss of the model on the sample set, and is also the objective
function of the model optimization.

An estimate of the parameter θ is obtained by maximizing L(θ), and solving for the
value of the parameter θ is accomplished by transforming it into an optimization problem
with the log-likelihood as the objective function. Equation (7) is a continuous convex
function of higher order derivability with respect to θ. According to convex optimization
theory, numerical optimization algorithms such as gradient descent and Newton’s method
can be used to determine the optimal solution. The limited memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) is the optimization algorithm used in this article, which is
a quasi-Newton method. L-BFGS approximates the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm using a limited amount of computer memory and can commonly get a
better solution than the two methods mentioned above with fewer iterations.

2.2.4. Determination of Scorecard Scales and Compensation Factors

To calculate the scorecard scale B and the compensation factor A, we set the expected
score for a rockburst case with an odds*, and the expected score for a doubling of the odds*.
Then the values of the A and B are calculated as:{

A− B log(odd∗) = s∗

A− B log(2odd∗) = s′
(8)

where odds* denotes the ratio of the probability that a case is a safety sample, s* is the
expected score for a rockburst case with an odds*, and s′ is the expected score doubling of
the odds*.

The score for each bin of the scorecard is obtained by substituting the scorecard scale
B and the compensation factor A into Equation (4).
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2.3. Evaluation of Prediction Effectiveness

A situation where a low risk level case is predicted to be a high risk level in the
rockburst risk prediction is called a false alarm, and a situation where a high risk level case
is predicted to be a low risk level is called a miss alarm. The accuracy (ACC) is the ratio of
the number of samples whose predicted results agree with the actual results to the total
number of samples. The false alarm rate (FAR) is defined as the ratio of false alarm cases to
the total number of all cases, and the miss alarm rate (MAR) is the ratio of miss alarm cases
to the total number of all cases. The ACC, FAR, and MAR of the rockburst risk prediction
model can be calculated using the confusion matrix. The confusion matrix for rockburst
risk prediction is shown in Table 1.

Table 1. The confusion matrix for rockburst risk prediction model. n: the number of case.

Actual Risk Level
Prediction Risk Level

None Light Moderate Strong

None n11 n12 n13 n14
Light n21 n22 n23 n24

Moderate n31 n32 n33 n34
Strong n41 n42 n43 n44

The multi-classification ACC, FAR, and MAR are calculated as:

ACC =
1

∑m
j ∑m

i=1 nij

m

∑
i=1

nii (9)

FAR =
∑m

j=2 ∑
j−1
i nij

∑m
j ∑m

i=1 nij
(10)

MAR =
∑m−1

j=1 ∑m
i=j+1 nij

∑m
j ∑m

i=1 nij
(11)

where, m is the number of sample label categories, and nij is the number of samples in row
i and column j of the confusion matrix. The subscript of nij indicates that a sample with
true label i is predicted to be a sample of class j. When i = j, the predicted sample case
is correct, when i > j, a sample case with high risk level is predicted to be low risk level,
which is called a miss alarm. When i < j, a sample case with a low risk level is predicted to
be a high risk level, which is called a false alarm.

2.4. Parameter Setting

We used Python to compile functions for ChiMerge, calculate WOE values, construct
rockburst risk scorecards, and IRPSC. The LR was implemented using the Logistic Regres-
sion class in scikit-learn-0.23.2.

The rockburst risk indicators were divided into four bins using ChiMerge. In this
paper, the expected score is set to S* = 0 when the safety odd* = 1 of the rockburst risk
scorecard. That is, when the safety probability of the case is greater than 0.5, the score of
the case scored using the rockburst risk scorecard is greater than 0; otherwise, it is less than
0. Therefore, when the score is greater than or equal to 0, the scorecard determines that the
sample is a safety sample, otherwise it is a dangerous sample. Set the expected score S′ = 10
when the safety odd* = 2, then the scorecard compensation factor A and scorecard scale B
values (calculated using Equation (8)) are 0 and 14.42, respectively.

3. Results
3.1. Rockburst Case Collection and Analysis

A total of 311 real-life rockburst cases were used as the training set, and all cases had
one of the rockburst hazard levels of none, light, moderate, or strong, with numbers of 48,
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94, 114, and 55, respectively. The rockburst case set was reorganized into case sets S1, S2,
and S3 according to the task decomposition method in Section 2.1, and the sample numbers
for the three rockburst case sets are shown in Table 2. The ratios of the number of safety
and hazard samples in the three rockburst case sets are 0.18, 0.84, and 4.65, respectively,
and there is an imbalanced dataset in all the rockburst case sets (Table 2).

Table 2. The sample numbers of the data sets for rockburst risk scorecard.

Data Set Safety Samples Risk Samples Ratios of Safety and
Hazard Samples

S1 48 263 0.18
S2 142 169 0.84
S3 256 55 4.65

Though existing research considers the influence of rock burst factors, this study
selects the shear stress σθ, uniaxial compressive strength σc, uniaxial tensile strength σt,
stress coefficient σθ/σc, rock brittleness coefficient σc/σt, and elastic energy index Wet
as rockburst risk prediction indicators. σθ refers to the σθ around underground opening;
σc and σt refer to uniaxial compressive stress and uniaxial tensile stress; σθ/σc is stress
concentration factor; σc/σt represent two forms of rock brittleness index; Wet reflects a
ratio between the stored elastic strain energy (φsp) and the dissipated elastic strain energy
(φst) in a hysteresis looping test. Table 3 shows the range, mean value, standard deviation
and skew of the rockburst risk prediction indicator.

Table 3. The range, mean value, standard deviation and skew of the rockburst risk prediction indicator.

Parameter Range Mean Standard Deviation Skew

σθ/MPa 2.6–297 57.53 49.40 2.99
σc/MPa 20–304 116.46 46.08 0.71
σt/MPa 0.4–22.6 7.02 4.30 1.00
σθ/σc 0.05–4.87 0.55 0.60 4.31
σc/σt 0.15–80 21.53 13.51 1.91
Wet 0.81–30 5.02 3.76 3.48

The values of different rockburst risk indicators show significant differences (Table 3).
In order to explore the distribution of indicators for cases with different risk levels, the hist
function in the matplotlib library of Python was used to plot the probability distribution
curves of indicators for rockburst cases with different risk levels (Figure 2).

The probability distribution curves of indicators for different rockburst risk levels
have a superimposed component, and the use of only a single rockburst risk indicator
will not accurately predict the rockburst risk level (Figure 2). As risk level increases, the
probability distribution curve peaks of the σθ, σθ/σc and Wet have a significant tendency
to increase, indicating that the rockburst risk increases as these three indicators increase.
The probability distribution curves of the σc, σt, and σc/σt vary in an insignificant pattern
with increasing rockburst risk. According to the probability distribution curves of the
indicators for different risk levels, it can be initially determined that the prediction ability
of σθ, σθ/σc and Wet are strong, and the prediction ability of σc, σt and σc/σt are light.
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Figure 2. The probability distribution curves of indicators for rockburst cases with varying risk levels. (a) Probability
density curves of indicators σθ of rockburst cases for different hazard classes. (b) Probability density curves of indicators
σc of rockburst cases for different hazard classes. (c) Probability density curves of indicators σθ/σc of rockburst cases
for different hazard classes. (d) Probability density curves of indicators σt of rockburst cases for different hazard classes.
(e) Probability density curves of indicators Wet of rockburst cases for different hazard classes. (f) Probability density curves
of indicators σc/σt of rockburst cases for different hazard classes.

3.2. The Intelligent Rockburst Risk Prediction Model by Using Scorecards

The rockburst risk scorecards f 1, f 2, and f 3 trained on sample sets S1, S2, and S3
respectively were used to construct the IRPSC (Table 4).
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Table 4. The rockburst risk scorecards f 1, f 2 and f 3, which trained on sample sets S1, S2, and S3, respectively.

Indicator Bin
f 1 f 2 f 3

θ Range WOE Score θ Range WOE Score θ Range WOE Score

σθ/MPa

1

0.32

<13.7 −4.88 23

0.30

<13.7 −5.14 22

0.32

<48.0 −2.23 10
2 13.7–24.0 −1.59 7 13.7–46.06 −1.15 5 48.0–73.2 −0.09 0
3 24.0–38.25 −0.59 3 46.06–62.1 0.44 −2 73.2–123.61 1.93 −9
4 >38.25 1.67 −8 >62.1 2.24 −10 >123.61 5.54 −26

σc/MPa

1

0.17

<61.1 2.44 6

−0.08

<112.0 −0.74 −1

−0.07

<83.78 −1.95 −2
2 61.1–135.07 −0.07 0 112.0–115.0 0.16 0 83.78–112.0 −0.45 0
3 135.0–190.8 1.62 −4 115.0–122.4 0.27 0 112.0–135.0 0.19 0
4 >190.85 2.77 −7 >122.47 1.04 1 >135.07 1.29 1

σt/MPa

1

−0.26

<4.7 −1.04 −4

−0.30

<2.88 −1.67 −7

0.39

<5.0 −1.95 11
2 4.7–6.0 −0.32 −1 2.88–6.7 −0.60 −3 5.0–10.51 0.12 −1
3 6.0–10.51 0.88 3 6.7–7.31 0.43 2 10.51–13.0 1.47 −8
4 >10.51 1.47 6 >7.31 1.04 5 >13.0 2.98 −17

σθ/σc

1

0.70

<0.23 −1.99 20

0.26

< 0.31 −1.74 6

0.30

<0.23 −2.93 13
2 0.23–0.31 −0.54 5 0.31–0.465 −0.29 1 0.23–0.63 −0.75 3
3 0.31–0.74 1.14 −12 0.465-0.55 0.74 −3 0.63–1.03 1.54 −7
4 >0.74 2.08 −21 > 0.55 1.42 −5 >1.025 4.44 −19

σc/σt

1

0.35

<6.3 −2.80 14

0.02

<6.3 −2.50 1

0.60

<6.3 −1.95 7
2 6.3–11.28 −1.74 9 6.3–10.11 −2.17 1 6.3–10.11 −1.69 5
3 11.28–22.9 0.03 0 10.11–22.9 −0.20 0 10.11–17.52 −0.15 1
4 >22.9 0.93 −5 >22.9 0.77 0 >17.52 0.49 −4

Wet

1

0.72

<1.5 −4.47 46

0.57

<2.87 −2.50 21

0.53

<4.9 −2.42 18
2 1.5–2.03 −2.86 30 2.87–4.9 −0.45 4 4.9–5.2 −0.56 4
3 2.03–2.5 −1.40 15 4.9–7.8 1.43 −12 5.2–9.3 1.17 −9
4 >2.5 1.04 −11 >7.8 4.26 −35 >9.3 4.85 −37

Base
score −31 −3 22

In the rockburst risk scorecard, the higher the absolute value of the score of a bin, the
more important in the rockburst risk prediction. The top three rockburst risk assessment
indicators in absolute scores in the rockburst risk scorecard are the σθ, σθ/σc, and Wet,
which are important indicators for predicting rockburst risk levels (Table 3). The highest
and lowest absolute values of the scores for Wet are large, and Wet is the most important
rockburst risk assessment indicator used in this paper. Reducing the Wet of the rock is the
key to reducing rock burst risk level. σc, σt and σc/σt scored low on the scorecard, which is
consistent with the results obtained from the probability distribution curves of indicators
in Figure 2.

The scorecard f 3 is used to identify whether the sample rockburst risk level is a strong
hazard, and the scorecard f 1 is used to distinguish whether the sample has a rockburst risk.
The critical values of Wet in scorecard f 1 are 1.5, 2.03, and 2.5, and the critical values of Wet
in scorecard f3 are 4.9, 5.2, and 9.3 (Table 5). In addition, the scorecard enables a quantitative
analysis of the rockburst risk based on score, because the rockburst risk scorecard was set
with an expected score of S* = 0 for Odds* = 1 and a score of S′ = 10 for odd* doubling, the
probability of the scorecard judging a rockburst case to be a safety sample is 0.5 when the
case is scored as 0, and 0.66 when the score is 10.

The threshold and scores of the bins correspond to the critical values and weights of
the indicators. They are obtained based on rockburst cases using ChiMerge, weights of
evidence, and LR. Different rockburst cases set will give different thresholds and scores,
achieving an adaptive adjustment of the critical values and indicator weights. The rockburst
risk scorecard uses the most familiar form of tabular scoring, as does the comprehensive
index method currently used in rockburst assessment to determine the rockburst risk by the
score. The rockburst risk scorecard allows for easy analysis of predictions based on scores,
allowing the user to understand the basis for the predictions. The IRPSC constructed based
on rockburst risk scorecards can adaptively adjust the critical values and indicator weights,
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while the model has strong interpretability, overcoming the problems plaguing machine
learning models.

Table 5. The IRPSC predicts the process and prediction results of rockburst cases during the construction of a riverside
hydropower station tunnel.

Case Indicator σθ/MPa σc/MPa σt/MPa σθ/σc σc/σt Wet
Total
Score

Scorecard
Predicted
Results

IRPSC
Prediction

Results

Actual
Rockburst
Risk Level

1

value 91.23 157.63 11.96 0.58 13.18 6.27

Moderate Strongf 1 score −8 −4 6 −12 0 −11 −60 hazard
f 2 score −10 1 5 −5 0 −12 −24 hazard
f 3 score −9 1 −8 3 1 −9 1 safety

2

value 66.77 148.48 8.47 0.45 17.53 5.08 -

Moderate Lightf 1 score −8 −4 3 −12 0 −11 −63 hazard
f 2 score −10 1 5 1 0 −12 −18 hazard
f 3 score 0 1 -1 3 -4 4 25 safety

3

value 51.5 132.05 6.33 0.39 20.86 4.63

Moderate Moderate
f 1 score −8 0 3 −12 0 −11 −59 hazard
f 2 score −2 1 −3 1 0 4 −2 hazard
f 3 score 0 0 −1 3 −4 18 38 safety

4

value 35.82 127.93 4.43 0.28 28.9 3.67

Light Lightf 1 score 3 0 −4 5 −5 −11 −43 hazard
f 2 score 5 1 −3 6 0 4 10 safety
f 3 score 10 0 11 3 -4 18 60 safety

5

value 21.5 107.52 2.98 0.2 36.04 2.29

None None
f 1 score 7 0 −4 20 −5 15 2 safety
f 2 score 5 −1 −3 6 0 21 25 safety
f 3 score 10 0 11 13 −4 18 70 safety

6

value 18.32 96.41 2.01 0.19 47.93 1.87

None None
f 1 score 7 0 −4 20 −5 30 17 safety
f 2 score 5 −1 −7 6 0 21 21 safety
f 3 score 10 0 11 13 −4 18 70 safety

7

value 110.3 167.19 12.67 0.66 13.2 6.83

Strong Strongf 1 score −8 −4 6 −12 0 −11 −60 hazard
f 2 score −10 1 5 −5 0 −12 −24 hazard
f 3 score −9 1 −8 −7 1 −9 −9 hazard

8

value 26.06 118.46 3.51 0.22 33.75 2.89

Light Lightf 1 score 3 0 −4 20 −5 −11 −28 hazard
f 2 score 5 0 −3 6 0 4 9 safety
f 3 score 10 0 11 13 −4 18 70 safety

3.3. Application to Riverside Hydropower Station Tunnel Rockburst Case

The IRPSC was applied to eight rockburst cases during the construction of a riverside
hydropower station tunnel [4], including two cases with no rockburst risk, three cases with
light rockburst risk, two cases with moderate rockburst risk, and two cases with strong
rockburst risk. The results of the model predictions are shown in Table 5.

The IRPSC accurately predicted six rockburst cases out of eight during the construction
of a riverside hydropower station tunnel (Table 5). Of the two cases that were incorrectly
predicted, one strong risk case was predicted as a moderate risk, while one light risk case
was predicted as a moderate risk. The real risk level of case 1 is strong, and the model
incorrectly predicts a moderate level, because the scorecard f 3 identified the case as safety.
The σθ/σc of case 1 is 0.58, which is in the 2nd bin and is the primary reason for the
incorrect prediction on scorecard f 3. Scorecard f 2 incorrectly predicts case 2 as a hazard
case, resulting in the actual light dangerous case 2 being predicted as a moderate. This is
primarily because case 2 has high σθ and Wet values. Case 2 has a σθ value of 91.3 MPa
and a score of −10 on scorecard f 2, which is the lowest score for this indicator on scorecard
f 2. The ACC, FAR, and MAR of the IRPSC applied to the riverside hydropower station
tunnel is 75%, 12.5%, and 12.5% respectively. The model predicts with a high degree of
accuracy; however, the model’s predictions are more skewed towards moderate hazards,
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meaning that the model is too conservative when analyzing cases with extreme hazards
and safety, which is an area for further improvement.

4. Discussion
4.1. Comparison with Machine Learning Models

To analyze the rockburst risk scorecard prediction accuracy, five machine learning
models, such as LR, SVM, CART, RF, and AdaBoost [40,41], were trained based on sample
sets S1, S2, and S3, respectively. The sample set is divided into five groups, one of which
is selected as the test set, and the remaining four groups are used as the training set. The
training set samples are used to train each machine learning model separately, and the
confusion matrix of the model for the test set is obtained. The above process was repeated
five times to sum the corresponding elements of the confusion matrix and obtain the
confusion matrix for each machine learning model on the test set. Then, the ACC, FAR,
and MAR results were calculated (Table 6).

Table 6. Confusion matrix, accuracy (ACC), false alarm rate (FAR) and miss alarm rate (MAR) of
five-fold cross-validation.

Data
Set Model TP FN FP TN ACC FAR MAR

S1

SCM 25 25 9 260 89.3% 50.0% 3.3%
LR 15 35 14 255 84.6% 70.0% 5.2%

SVM 7 43 6 263 84.6% 86.0% 2.2%
CART 29 21 12 257 89.7% 42.0% 4.5%

RF 32 18 9 260 91.5% 36.0% 3.3%
AdaBoost 29 21 11 258 90.0% 42.0% 4.1%

S2

SCM 109 37 40 133 75.9% 25.3% 23.1%
LR 113 33 41 132 76.8% 22.6% 23.7%

SVM 113 33 46 127 75.2% 22.6% 26.6%
CART 109 37 45 128 74.3% 25.3% 26.0%

RF 115 31 21 152 83.7% 21.2% 12.1%
AdaBoost 109 37 30 143 79.0% 25.3% 17.3%

S3

SCM 248 13 27 31 87.5% 5.0% 46.6%
LR 253 8 31 27 87.8% 3.1% 53.4%

SVM 258 3 39 19 86.8% 1.1% 67.2%
CART 233 28 25 33 83.4% 10.7% 43.1%

RF 248 13 26 32 87.8% 5.0% 44.8%
AdaBoost 238 23 29 29 83.7% 8.8% 50.0%

Note: TP is true positive and means the number of positive cases predicted as positive; FN is false negative and
indicates the number of positive cases predicted as negative classes; FP is false positive and represents the number
of negative cases predicted as positive; and TN is true negative and means the number of negative cases predicted
as negative classes.

The ACC of the rockburst risk scorecard f 1, f 2, and f 3 are 89.3%, 75.9%, and 87.5%,
respectively (Table 6). Of all the models, RF prediction accuracy was highest on sample sets
S1, S2, and S3, with 2.2%, 7.8%, and 0.3% higher prediction accuracy than the rockburst
risk scorecard, respectively. The prediction accuracy of the rockburst risk scorecard is
higher than that of the SVM and is about the same as that of LR, CART, and AdaBoost.
The rockburst risk scorecard can provide accurate predictions. In addition, the IRPSC
transforms the abstract machine learning models into a tabular form, making the evaluation
process simple and transparent, which overcomes the commonly black box problems of
machine learning models. Our results are not only accurate in predicting rockburst risk,
but also in identifying the dominant factors contributing to rockburst risk in a way that
previous rockburst prediction methods have not been able to accomplish.

The rockburst risk scorecard f 1 had a FAR of 50.0% on the test set, and the rockburst
risk scorecard f 3 had a MAR of 46.6% on the test set. When training LR, the aim is to
maximize accuracy, which implicitly assumes that the number of samples in each category
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in the training set is approximately equal, and that if there is an imbalanced data set, the
prediction will be more favorable to the category with the higher number of samples. The
ratio of the number of safety samples to the number of danger samples in sample sets
S1 and S3 is 0.19 and 4.50, respectively, and there is a serious imbalance in the sample
categories, leading to a high FAR for rockburst risk scorecard f1 and a high MAR for f 3
(Table 1).

4.2. Effect of Hazard Sample Category Weights on Scorecard Prediction Results

In rockburst risk prediction, the losses from miss alarms are much greater than
those from false alarms. False alarms will tend to eliminate rockburst measures and
incur additional costs, but miss alarms will cause rockburst accidents, which will not
only cause damage to equipment, but also cause injury or death. For example, in 2018,
a major rockburst accident occurred in the 1303 working face of Shandong Long Yun
Coal Industry Co., Ltd. (Heze, China). The direct economic loss of the accident was
56.398 million. Reducing the MAR of the score of IRPSC is helpful for improving the
application of rockburst risk prediction methods. Using a LR model that considers category
weights, constructing a rockburst risk scorecard can improve the accuracy of the model’s
prediction of a hazard sample by increasing the weight value of the hazard sample. The
log-likelihood function of the LR model considering the category weights is:

L(θ) =
N

∑
i=1

[C1·yi log[p(y = 1|xi )] + C0(1− yi) log(1− p(y = 1|xi ))] (12)

where C1 and C0 are the category weight values for the hazard and safety samples, respec-
tively. N is the total number of samples, xi, yi is the indicator and label of the ith case in the
sample set, and for hazard sample yi = 1 and safety sample yi = 0, p (y = 1|xi) represents
the probability that the model predicts that sample is a hazard.

The logistic regression class in sklearn uses the class_weight parameter to set the
sample category weights. When setting the safety sample category weight to 1 and the
hazard sample category weight to 0.5, 1, 2.5, 5, 7.5, and 10, respectively, the confusion
matrix, ACC, FAR, and MAR of the rockburst risk scorecard f 3 on the test set are shown in
Table 7.

Table 7. ACC, FAR and MAR of the scorecard f 3 with different category weighted on the test set.

Category
Weight TP FN FP TN ACC MAR FAR

0.5 257 4 33 25 88.4% 56.9% 1.5%
1 248 13 27 31 87.5% 46.6% 5.0%

2.5 232 29 18 40 85.3% 31.0% 11.1%
5 206 55 14 44 78.4% 24.1% 21.1%

7.5 192 69 13 45 74.3% 22.4% 26.4%
10 179 82 10 48 71.2% 17.2% 31.4%

When the safety sample weight is set to 1 and the hazard sample weight is gradually
increased from 0.5 to 10, the rockburst risk scorecard’s MAR gradually decreases from
56.9% to 17.2%, the FAR increases from 1.5% to 31.4%, and the ACC decreases from 88.4%
to 71.2% (Table 7). It is possible to set larger category weights of hazard sample to reduce
the MAR of rockburst risk scorecard, but this will increase the FAR of the scorecard and
should be considered when determining the sample category weights.

5. Conclusions

A total of 311 real rockburst cases were used to construct the intelligent rockburst
prediction model based on scorecard methodology (IRPSC), and the model was applied
to eight rockburst cases that occurred during the construction of a riverside hydropower
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station tunnel. The effects of category weights on the false alarm rate (FAR), miss alarm rate
(MAR), and accuracy (ACC) of the rockburst scorecard were investigated. The following
conclusions were obtained.

(1) Using 311 rockburst cases, an IRPSC was constructed based on ChiMerge, WOE, and
LR algorithms. The model was applied to predict rockburst cases in the riverside hy-
dropower station tunnel. The IRPSC can identify the main controlling factors affecting
the occurrence of rockburst. As for the field application in this work, the Wet was the
main indicator affecting the rockburst risk level. The model predicted an ACC, FAR,
and MAR of 75%, 12.5% and 12.5%, respectively, demonstrating that the evaluation
process of the IRPSC is simple and transparent with high prediction accuracy.

(2) The influence of sample category weight on the predicted FAR and MAR of rock burst
was further investigated. Results show that when the safety sample category weight
is set to 1 and the hazard sample category weight is gradually increased from 0.5
to 10, the rockburst risk scorecard’s MAR gradually decreases from 56.9% to 17.2%,
the FAR increases from 1.5% to 31.4%, and the ACC decreases from 88.4% to 71.2%.
Setting higher category hazard sample weights reduces the MAR of the rockburst
risk scorecard; however, this will increase the FAR and should be considered when
determining sample category weights.
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