Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Authors = Weizao Chen

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3073 KiB  
Article
Human Domain Antibodies to Conserved Epitopes on HER2 Potently Inhibit Growth of HER2-Overexpressing Human Breast Cancer Cells In Vitro
by Hongqian Wang, Yanping Wang, Zuoxiang Xiao, Wei Li, Dimiter S. Dimitrov and Weizao Chen
Antibodies 2019, 8(1), 25; https://doi.org/10.3390/antib8010025 - 18 Mar 2019
Cited by 14 | Viewed by 8272
Abstract
The FDA approval of two anti-HER2 monoclonal antibodies, trastuzumab and pertuzumab, and an antibody-drug conjugate, trastuzumab emtansine, has transformed clinical practice for HER2-positive cancers. However, not all patients respond to therapy, and the majority of responders eventually develop resistance. In addition, cardiotoxicity is [...] Read more.
The FDA approval of two anti-HER2 monoclonal antibodies, trastuzumab and pertuzumab, and an antibody-drug conjugate, trastuzumab emtansine, has transformed clinical practice for HER2-positive cancers. However, not all patients respond to therapy, and the majority of responders eventually develop resistance. In addition, cardiotoxicity is a major safety concern for their clinical use. Thus, there remains a need for the discovery and development of novel classes of HER2-targeted therapeutics with high efficacy and specificity. In this study, we report the identification and characterization of fully human single-domain antibodies (dAbs) targeting HER2 epitopes that are highly conserved among various species and non-overlapping with those of trastuzumab and pertuzumab. An Fc-fusion protein of the best binder demonstrated much higher inhibitory activity against HER2-amplified human breast cancer cell lines than trastuzumab and pertuzumab. Unlike the latter, however, it did not have an effect on gastric and ovarian cancer cell lines with HER2 overexpression. The dAb-Fc fusion protein showed poor pharmacokinetics in mice, thus limiting its potential for therapeutic use. It could be useful as an agent for the exploration of functionally important conserved structures on HER2 with implications for the design of novel therapeutics and elucidation of mechanisms of HER2-mediated tumorigenesis. Full article
Show Figures

Figure 1

23 pages, 3616 KiB  
Review
Antibody Aggregation: Insights from Sequence and Structure
by Wei Li, Ponraj Prabakaran, Weizao Chen, Zhongyu Zhu, Yang Feng and Dimiter S. Dimitrov
Antibodies 2016, 5(3), 19; https://doi.org/10.3390/antib5030019 - 5 Sep 2016
Cited by 112 | Viewed by 39407
Abstract
Monoclonal antibodies (mAbs) are the fastest-growing biological therapeutics with important applications ranging from cancers, autoimmunity diseases and metabolic disorders to emerging infectious diseases. Aggregation of mAbs continues to be a major problem in their developability. Antibody aggregation could be triggered by partial unfolding [...] Read more.
Monoclonal antibodies (mAbs) are the fastest-growing biological therapeutics with important applications ranging from cancers, autoimmunity diseases and metabolic disorders to emerging infectious diseases. Aggregation of mAbs continues to be a major problem in their developability. Antibody aggregation could be triggered by partial unfolding of its domains, leading to monomer-monomer association followed by nucleation and growth. Although the aggregation propensities of antibodies and antibody-based proteins can be affected by the external experimental conditions, they are strongly dependent on the intrinsic antibody properties as determined by their sequences and structures. In this review, we describe how the unfolding and aggregation susceptibilities of IgG could be related to their cognate sequences and structures. The impact of antibody domain structures on thermostability and aggregation propensities, and effective strategies to reduce aggregation are discussed. Finally, the aggregation of antibody-drug conjugates (ADCs) as related to their sequence/structure, linker payload, conjugation chemistry and drug-antibody ratio (DAR) is reviewed. Full article
Show Figures

Figure 1

13 pages, 319 KiB  
Review
Conjugates of Small Molecule Drugs with Antibodies and Other Proteins
by Yang Feng, Zhongyu Zhu, Weizao Chen, Ponraj Prabakaran, Kedan Lin and Dimiter S. Dimitrov
Biomedicines 2014, 2(1), 1-13; https://doi.org/10.3390/biomedicines2010001 - 24 Jan 2014
Cited by 28 | Viewed by 12011
Abstract
Conjugates of small molecule drugs with antibodies (ADCs) and with other proteins (protein-drug conjugates, PDC) are used as a new class of targeted therapeutics combining the specificity of monoclonal antibodies (mAbs) and other proteins with potent cytotoxic activity of small molecule drugs for [...] Read more.
Conjugates of small molecule drugs with antibodies (ADCs) and with other proteins (protein-drug conjugates, PDC) are used as a new class of targeted therapeutics combining the specificity of monoclonal antibodies (mAbs) and other proteins with potent cytotoxic activity of small molecule drugs for the treatment of cancer and other diseases. A(P)DCs have three major components, antibody (targeting protein), linker and payload, the cytotoxic drug. Recently, advances in identifying targets, selecting highly specific mAbs of preferred isotypes, optimizing linker technology and improving chemical methods for conjugation have led to the approval of two ADCs by Food and Drug Administration (FDA) and more than 30 ADCs in advanced clinical development. However, the complex and heterogeneous nature of A(P)DCs often cause poor solubility, instability, aggregation and eventually unwanted toxicity. This article reviews the main components of A(P)DCs, and discusses the choices for drugs, linkers and conjugation methods currently used. Future work will need to focus on developments and strategies for overcoming such major problems associated with the A(P)DCs. Full article
(This article belongs to the Special Issue Feature Papers)
Show Figures

Graphical abstract

19 pages, 180 KiB  
Article
Cross-Reactive Human IgM-Derived Monoclonal Antibodies that Bind to HIV-1 Envelope Glycoproteins
by Weizao Chen, Zhongyu Zhu, Huaxin Liao, Gerald V. Quinnan, Christopher C. Broder, Barton F. Haynes and Dimiter S. Dimitrov
Viruses 2010, 2(2), 547-565; https://doi.org/10.3390/v2020547 - 4 Feb 2010
Cited by 14 | Viewed by 11463
Abstract
Elicitation of antibodies with potent and broad neutralizing activity against HIV by immunization remains a challenge. Several monoclonal antibodies (mAbs) isolated from humans with HIV-1 infection exhibit such activity but vaccine immunogens based on structures containing their epitopes have not been successful for [...] Read more.
Elicitation of antibodies with potent and broad neutralizing activity against HIV by immunization remains a challenge. Several monoclonal antibodies (mAbs) isolated from humans with HIV-1 infection exhibit such activity but vaccine immunogens based on structures containing their epitopes have not been successful for their elicitation. All known broadly neutralizing mAbs (bnmAbs) are immunoglobulin (Ig) Gs (IgGs) and highly somatically hypermutated which could impede their elicitation. Ig Ms (IgMs) are on average significantly less divergent from germline antibodies and are relevant for the development of vaccine immunogens but are underexplored compared to IgGs. Here we describe the identification and characterization of several human IgM-derived mAbs against HIV-1 which were selected from a large phage-displayed naive human antibody library constructed from blood, lymph nodes and spleens of 59 healthy donors. These antibodies bound with high affinity to recombinant envelope glycoproteins (gp140s, Envs) of HIV-1 isolates from different clades. They enhanced or did not neutralize infection by some of the HIV-1 primary isolates using CCR5 as a coreceptor but neutralized all CXCR4 isolates tested although weakly. One of these antibodies with relatively low degree of somatic hypermutation was more extensively characterized. It bound to a highly conserved region partially overlapping with the coreceptor binding site and close to but not overlapping with the CD4 binding site. These results suggest the existence of conserved structures that could direct the immune response to non-neutralizing or even enhancing antibodies which may represent a strategy used by the virus to escape neutralizing immune responses. Further studies will show whether such a strategy plays a role in HIV infection of humans, how important that role could be, and what the mechanisms of infection enhancement are. The newly identified mAbs could be used as reagents to further characterize conserved non-neutralizing, weakly neutralizing or enhancing epitopes and modify or remove them from candidate vaccine immunogens. Full article
(This article belongs to the Special Issue AIDS Vaccine)
Show Figures

Figure 1

16 pages, 657 KiB  
Article
Maturation Pathways of Cross-Reactive HIV-1 Neutralizing Antibodies
by Xiaodong Xiao, Weizao Chen, Yang Feng and Dimiter S. Dimitrov
Viruses 2009, 1(3), 802-817; https://doi.org/10.3390/v1030802 - 6 Nov 2009
Cited by 57 | Viewed by 14110
Abstract
Several human monoclonal antibodies (hmAbs) and antibody fragments, including the best characterized in terms of structure-function b12 and Fab X5, exhibit relatively potent and broad HIV-1 neutralizing activity. However, the elicitation of b12 or b12-like antibodies in vivo by vaccine immunogens based on [...] Read more.
Several human monoclonal antibodies (hmAbs) and antibody fragments, including the best characterized in terms of structure-function b12 and Fab X5, exhibit relatively potent and broad HIV-1 neutralizing activity. However, the elicitation of b12 or b12-like antibodies in vivo by vaccine immunogens based on the HIV-1 envelope glycoprotein (Env) has not been successful. B12 is highly divergent from the closest corresponding germline antibody while X5 is less divergent. We have hypothesized that the relatively high degree of specific somatic hypermutations may preclude binding of the HIV-1 envelope glycoprotein (Env) to closest germline antibodies, and that identifying antibodies that are intermediates in the pathways to maturation could help design novel vaccine immunogens to guide the immune system for their enhanced elicitation. In support of this hypothesis we have previously found that a germline-like b12 (monovalent and bivalent scFv as an Fc fusion protein or IgG) lacks measurable binding to an Env as measured by ELISA with a sensitivity in the μM range [1]; here we present evidence confirming and expanding these findings for a panel of Envs. In contrast, a germline-like scFv X5 bound Env with high (nM) affinity. To begin to explore the maturation pathways of these antibodies we identified several possible b12 intermediate antibodies and tested their neutralizing activity. These intermediate antibodies neutralized only some HIV-1 isolates and with relatively weak potency. In contrast, germline-like scFv X5 neutralized a subset of the tested HIV-1 isolates with comparable efficiencies to that of the mature X5. These results could help explain the relatively high immunogenicity of the coreceptor binding site on gp120 and the abundance of CD4-induced (CD4i) antibodies in HIV-1-infected patients (X5 is a CD4i antibody) as well as the maturation pathway of X5. They also can help identify antigens that can bind specifically to b12 germline and intermediate antibodies that together with Envs could be used as a conceptually novel type of candidate vaccines. Such candidate vaccines based on two or more immunogens could help guiding the immune system through complex maturation pathways for elicitation of antibodies that are similar or identical to antibodies with known properties. Full article
(This article belongs to the Special Issue AIDS Vaccine)
Show Figures

Figure 1

Back to TopTop