Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Authors = Vsevolod D. Savelenko ORCID = 0000-0002-4889-2592

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3387 KiB  
Article
Use of Asphaltene Stabilizers for the Production of Very Low Sulphur Fuel Oil
by Alisa E. Zvereva, Mikhail A. Ershov, Vsevolod D. Savelenko, Marina M. Lobashova, Marina Y. Rogova, Ulyana A. Makhova, Ekaterina O. Tikhomirova, Nikita O. Burov, David R. Aleksanyan, Vladimir M. Kapustin, Elena A. Chernysheva and Arina I. Rakova
Energies 2023, 16(22), 7649; https://doi.org/10.3390/en16227649 - 18 Nov 2023
Cited by 2 | Viewed by 2183
Abstract
Marine fuel oil stability has always been an issue for bunkering companies and ship owners all around the world and the problem has become even more apparent with the introduction of the Global Sulphur Gap by the International Maritime Organization (IMO) in 2020. [...] Read more.
Marine fuel oil stability has always been an issue for bunkering companies and ship owners all around the world and the problem has become even more apparent with the introduction of the Global Sulphur Gap by the International Maritime Organization (IMO) in 2020. In this article, the historical background and the technical reasons why marine fuel oils lose their stability, as well as methods for preventing such instability from occurring, are presented. While it is possible to make fuel compositions stable by adjusting their composition in such a way that the components of the fuel are compatible, considering that marine fuel oils are often comprised of the least value-added products, the method of adding special fuel oil stabilizers (also known as “asphaltene dispersants”) is usually preferred. An overview of such stabilizers is presented; their chemical composition, based on the information provided by the manufacturers and/or inventors is studied. In addition, the experimental research of the produced marine fuel oil and its components is carried out. The results of the model composition studies show that adding even as little as 10% of residual asphaltene-rich components can make a composition with a high stability reserve unstable. It was also shown that the content of the asphaltene-rich component in a stable fuel can be increased from 3% to 10% by introducing stabilizers in low amounts (up to 2000 ppm), thus lowering the amount of higher value-added, mostly naphthene-paraffinic-based components. Different methods of fuel stability evaluation were studied and tested, most of them being in correlation with one another. Several types of stability enhancers were tried out on unstable fuel, with stabilizers based on alkylphenol formaldehyde resin showing the best results. Full article
(This article belongs to the Special Issue High Value-Added Utilization of Fossil Fuels)
Show Figures

Figure 1

24 pages, 6769 KiB  
Review
An Overview of the Global Market, Fleet, and Components in the Field of Aviation Gasoline
by Mikhail A. Ershov, Nikita A. Klimov, Vsevolod D. Savelenko, Ulyana A. Makhova, Nikita O. Burov, Egor V. Karpunin-Ozherovskiy, David R. Aleksanyan, Elena S. Donskaya, Daria Y. Mukhina, Vladimir M. Kapustin, Kirill A. Ovchinnikov, Ekaterina V. Podlesnova and Andrey V. Kleymenov
Aerospace 2023, 10(10), 863; https://doi.org/10.3390/aerospace10100863 - 30 Sep 2023
Cited by 3 | Viewed by 3080
Abstract
Aviation gasoline is a fuel for spark-ignition piston internal combustion engines, which are usually used in light aircraft (small aviation and general aviation). This technique is widely used for regional and interregional transportation, for the initial training and retraining of aviation staff, for [...] Read more.
Aviation gasoline is a fuel for spark-ignition piston internal combustion engines, which are usually used in light aircraft (small aviation and general aviation). This technique is widely used for regional and interregional transportation, for the initial training and retraining of aviation staff, for private use, for agricultural purposes, for the development of aviation sports and tourism, and for combat and rescue operations. This article gives some estimates of the production and consumption of aviation gasoline in the EU, North and South America, Asia–Pacific, Africa, and CIS countries. Export possibilities and the reliance on import within different regions are analyzed. Economic indicators for aviation gasoline are calculated by assessing the share of its production in the GDP and per capita consumption. In the context of the transition to unleaded aviation gasoline, the structure of the piston aviation fleet and its readiness for the transition are considered. The paper also analyzes the following existing components of unleaded aviation gasoline: technical capabilities and promising components. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

19 pages, 1062 KiB  
Article
New Prospects of Waste Involvement in Marine Fuel Oil: Evolution of Composition and Requirements for Fuel with Sulfur Content up to 0.5%
by Dmitriy V. Nelyubov, Marat I. Fakhrutdinov, Alena A. Sarkisyan, Evgeniy A. Sharin, Mikhail A. Ershov, Ulyana A. Makhova, Alisa E. Makhmudova, Nikita A. Klimov, Marina Y. Rogova, Vsevolod D. Savelenko, Vladimir M. Kapustin, Marina M. Lobashova and Ekaterina O. Tikhomirova
J. Mar. Sci. Eng. 2023, 11(7), 1460; https://doi.org/10.3390/jmse11071460 - 22 Jul 2023
Cited by 7 | Viewed by 3278
Abstract
Research was carried out on the possibility of involving oil refining wastes and petrochemical by-products in marine fuel oil. It was shown that the properties of the studied products (VAT distillation residue of butyl alcohols, heavy pyrolysis tar, desalted phenol production tar, waste [...] Read more.
Research was carried out on the possibility of involving oil refining wastes and petrochemical by-products in marine fuel oil. It was shown that the properties of the studied products (VAT distillation residue of butyl alcohols, heavy pyrolysis tar, desalted phenol production tar, waste motor oil mixture) mainly differ from primary and secondary oil refining products used in this fuel with increased toxicity (hazard classes 2 and 3). A clear disadvantage of waste motor oils is an increased content of metals, particularly zinc, calcium and phosphorus, which leads to high ash content. Recommended concentrations for introducing components into marine fuels are given. The influences of the composition and sulfur content on operational properties and quality indexes of VLSFO were also studied. It is shown that the use of products of deep hydrotreatment of vacuum-distillate fractions of oil processing can worsen its protective (anticorrosive) properties and colloidal stability; therefore, a reduction of sulfur content below 0.1% in this fuel is inexpedient without the use of additives. The requirements for VLSFO quality indicators have been developed. Application of VLSFO corresponding to the developed requirements will provide an increase in performance of ship power plants and the stability of VLSFO quality, which will contribute to cost reduction of ship owners when using it. Full article
(This article belongs to the Special Issue Marine Renewable Energy and the Transition to a Low Carbon Future)
Show Figures

Figure 1

39 pages, 14922 KiB  
Article
Technological Potential Analysis and Vacant Technology Forecasting in Properties and Composition of Low-Sulfur Marine Fuel Oil (VLSFO and ULSFO) Bunkered in Key World Ports
by Mikhail A. Ershov, Vsevolod D. Savelenko, Alisa E. Makhmudova, Ekaterina S. Rekhletskaya, Ulyana A. Makhova, Vladimir M. Kapustin, Daria Y. Mukhina and Tamer M. M. Abdellatief
J. Mar. Sci. Eng. 2022, 10(12), 1828; https://doi.org/10.3390/jmse10121828 - 28 Nov 2022
Cited by 31 | Viewed by 6246
Abstract
Analysis of the very-low-sulfur fuel oil (VLSFO) and ultra-low-sulfur fuel oil (ULSFO) bunkered in key ports in Asia, the Middle East, North America, Western Europe, and Russia is presented. The characteristics of said fuels, including density, sulfur content, kinematic viscosity, aluminum and silicon [...] Read more.
Analysis of the very-low-sulfur fuel oil (VLSFO) and ultra-low-sulfur fuel oil (ULSFO) bunkered in key ports in Asia, the Middle East, North America, Western Europe, and Russia is presented. The characteristics of said fuels, including density, sulfur content, kinematic viscosity, aluminum and silicon content, vanadium and nickel content, as well as pour point are investigated. Furthermore, the main trends and correlations are also discussed. Based on the graphical and mathematical analysis of the properties, the composition of the fuels is predicted. The key fuel components in Asian ports, the most important of which is Singapore, are hydrodesulfurized atmospheric residues (AR) (50–70%) and catalytic cracker heavy cycle oil (HCO) (15–35%) with the addition of other components, which is explained by the presence of a number of large oil refining centers in the area. In the Middle East ports, the most used VLSFO compositions are based on available resources of low-sulfur components, namely hydrodesulfurized AR, the production facilities of which were recently built in the region. In European ports, due to the relatively low sulfur content in processed oils, straight-run AR is widely used as a component of low-sulfur marine fuels. In addition, fuels in Western European ports contain on average significantly more hydrotreated vacuum gas oil (21%) than in the rest of the world (4–5%). Finally, a mixture of hydrotreated (80–90%) and straight-run fuel oil (10–15%) with a sulfur content of no more than 2.0–2.5% is used as the base low-sulfur component of marine fuels in the ports of Singapore and the Middle East. Full article
(This article belongs to the Special Issue Marine Fuels and Green Energy)
Show Figures

Figure 1

Back to TopTop