Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Authors = Viacheslav I. Kharuk

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 11465 KiB  
Article
Scots Pine at Its Southern Range in Siberia: A Combined Drought and Fire Influence on Tree Vigor, Growth, and Regeneration
by Viacheslav I. Kharuk, Il’ya A. Petrov, Alexander S. Shushpanov, Sergei T. Im and Sergei O. Ondar
Forests 2025, 16(5), 819; https://doi.org/10.3390/f16050819 - 14 May 2025
Viewed by 442
Abstract
Climate models have predicted changes in woody plant growth, vitality, and species distribution. Those changes are expected mainly within the boundaries of species ranges. We studied the influence of changing hydrothermal and burning-rate regimes on relict pine stands at the southern edge of [...] Read more.
Climate models have predicted changes in woody plant growth, vitality, and species distribution. Those changes are expected mainly within the boundaries of species ranges. We studied the influence of changing hydrothermal and burning-rate regimes on relict pine stands at the southern edge of the Pinus sylvestris range in Siberia. We hypothesize that (1) warming has stimulated pine growth under conditions of sufficient moisture supply, and (2) increased burning rate has threatened forest viability. We found that the increase in air temperature, combined with the decrease in soil and air drought, stimulated tree growth. Since the “warming restart” around 2000, the growth index (GI) of pines has exceeded its historical value by 1.4 times. The GI strongly correlates with the GPP and NPP of pine stands (r = 0.82). Despite the increased fire rate, the GPP/NPP and EVI index of both pine stands and surrounding bush–steppes are increasing, i.e., the pine habitat is “greening” since the warming restart. These results support the prediction (by climatic scenarios SSP4.5, SSP7.0, and SSP8.5) of improvement in tree habitat in the Siberian South. Meanwhile, warming has led to a reduction in the fire-return interval (up to 3–5 y). Although the post-fire density of seedlings on burns (ca. 10,000 per ha) is potentially sufficient for pine forest recovery, repeated surface fires have eliminated the majority of the undergrowth and afforestation. In a changing climate, the preservation of relict pine forests depends on a combination of moisture supply, burning rate, and fire suppression. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

19 pages, 13236 KiB  
Article
Permafrost Degradation and Vegetation Growth Beyond the Polar Circle in Siberia
by Viacheslav I. Kharuk, Sergei T. Im, Il’ya A. Petrov and Evgeny G. Shvetsov
Forests 2025, 16(1), 47; https://doi.org/10.3390/f16010047 - 30 Dec 2024
Viewed by 826
Abstract
Permafrost thawing is potentially a crucial but poorly investigated factor that influences vegetation dynamics in the Arctic. We studied the permafrost thaw rate beyond the Polar Circle in Siberia. We analyzed its influence on the larch (Larix spp.) growth and Arctic vegetation [...] Read more.
Permafrost thawing is potentially a crucial but poorly investigated factor that influences vegetation dynamics in the Arctic. We studied the permafrost thaw rate beyond the Polar Circle in Siberia. We analyzed its influence on the larch (Larix spp.) growth and Arctic vegetation (sparse larch forests, tundra, and forest–tundra communities) productivity (NPP). We checked the following hypotheses: (1) satellite gravimetry is valid for permafrost thawing analysis; (2) meltwater runoff stimulated trees’ growth and NPP. We used satellite (GRACE, Terra/MODIS) and field data, and larch tree radial growth index measurements. We found a continuous negative trend in the terrestrial water content (r2 = 0.67) caused by permafrost thawing beyond the Polar Circle. Runoff is maximal in West and Mid Siberia (9.7 ± 2.9 kg/m2/y) and decreases in the eastward direction with minimal values in the Chukotka Peninsula sector (−2.9 ± 3.2 kg/m2/y). We found that the growth increment of larch trees positively correlated with meltwater runoff (0.5…0.6), whereas the correlation with soil water content was negative (−0.55…−0.85). Permafrost thawing leads to an increase in the Arctic vegetation productivity. We found a positive trend in NPP throughout the Siberian Arctic (r2 = 0.30). NPP negatively correlated with soil water content (r = −0.55) and positively with meltwater runoff (West Siberia, r = 0.7). An increase in VPD (vapor pressure deficit) and air and soil temperatures stimulated the larch growth and vegetation NPP (r = 0.5…0.9 and r = 0.6…0.9, respectively). Generally, permafrost degradation leads to improved hydrothermal conditions for trees and vegetation growth and contributes to the preservation of the Arctic as a carbon sink despite the increase in burning rate. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

24 pages, 5631 KiB  
Article
Siberian Pine and Larch Response to Warming-Drying Climate in the Southern Boundary of Their Range
by Ilya A. Petrov, Viacheslav I. Kharuk, Alexey S. Golyukov, Sergei T. Im, Sergei O. Ondar and Alexander S. Shushpanov
Forests 2024, 15(6), 1054; https://doi.org/10.3390/f15061054 - 18 Jun 2024
Cited by 1 | Viewed by 1562
Abstract
Trees’ growth and areal responses to changing climate are primarily expected within the edges of the species range. Here, we compared the responses of Siberian pine (Pinus sibirica Du Tour), a moisture-sensitive species, and drought-resistant larch (Larix sibirica Ledeb.) at the [...] Read more.
Trees’ growth and areal responses to changing climate are primarily expected within the edges of the species range. Here, we compared the responses of Siberian pine (Pinus sibirica Du Tour), a moisture-sensitive species, and drought-resistant larch (Larix sibirica Ledeb.) at the southern part of their ranges in the Siberian Mountains (the Tannu-Ola Ridge). We study the species’ growth and proportion in the forests from forest-steppe to treeline ecotone along the elevation gradient. These studies are based on radial growth index (GI) analysis and GI dependence on the climate variables. We used satellite time series to detect the land cover changes (areas of larch and Siberian pine, as well as shrubs and birch). We compared trees’ GI before and after warming “restart” in the late 1990s. Generally, GI dependence on the air temperature was negative at elevations below c. 1600 m a.s.l., whereas GI dependence on the moisture variables (precipitation, vapor pressure deficit, and soil moisture) was positive for both species. Above 1600 m, increasing air temperatures stimulated species growth, whereas the influence of moisture variables was negative (for larch) or neutral (for Siberian pine). After the warming restart, the GI of both conifers increased in moisture-sufficient high elevations and treeline ecotone, whereas within low elevations (<1300 m), the GI was stagnant or suppressed. Both species’, especially Siberian pine, negative growth dependence on air temperature and positive dependence on the moisture variables strongly increased since the warming restart. We found a risen growth dependence of both species on the soil-stored water during the previous year (September–October), which smoothed moisture stress at the beginning of the growing season. Yet both species’ growth also suffered as a result of early spring warms. We found that larch is migrating in both uphill and downhill directions, while Siberian pine is migrating uphill only. Forests loss occurred at low elevations (<1300 m), whereas forest and shrub gain occurred at high (>2000 m) ones. The upper boundary of the forests and shrubs is migrating uphill at rates of about 0.8 and 0.3 m/y, respectively. We observed a decrease in Siberian pine proportion in the forests, whereas areas of larch and birch strongly increased (by 150% and 100%, respectively), which indicates the retreat of Siberian pine from its southern habitat. We suggested afforestation of the areas of Siberian pine mortality by the drought-tolerant larch species. Full article
Show Figures

Figure 1

13 pages, 3493 KiB  
Article
Mountain Taiga in a Warming Climate: Contrast of Siberian Pine Growth along an Elevation Gradient
by Viacheslav I. Kharuk, Il’ya A. Petrov, Alexey S. Golyukov, Sergei T. Im and Alexander S. Shushpanov
Forests 2024, 15(1), 50; https://doi.org/10.3390/f15010050 - 26 Dec 2023
Cited by 4 | Viewed by 1969
Abstract
The growth and survival of trees in the Siberian Mountains are experiencing a strong influence on climate warming. We analyzed Siberian pine (SP, Pinus sibirica) growth within the treeline ecotone in high (>1000 m) and low (<900 m) lands. We used ground [...] Read more.
The growth and survival of trees in the Siberian Mountains are experiencing a strong influence on climate warming. We analyzed Siberian pine (SP, Pinus sibirica) growth within the treeline ecotone in high (>1000 m) and low (<900 m) lands. We used ground surveys, dendrochronology, and climate variable data analysis. We found a contrasting response of SP growth with increasing air temperature and moisture parameters along the elevation gradient. In the treeline ecotone and highlands, the tree’s growth has been increasing since warming onset in the 1970s, whereas in the lowlands, the initial growth increase switched to a growth drop since the beginning of the 2000s, with a consequent partial mortality of the Siberian pine forest caused by warming-driven water stress in combination with bark borers’ attacks. This mortality suggests the retraction of the Siberian pine range in the lowlands of the Siberian Mountains. The projected drought increase will likely lead to the substitution of Siberian pine with drought-tolerant species. The tree’s growth index (GI) dependence on air temperature and moisture variables includes two phases. In the first phase (since the warming onset in the 1970s), the trees’ GI was positively correlated with elevated temperature, whereas correlations with precipitation and soil moisture were negative. During the second phase (since the increase in warming in the 2000s), negative correlations between the GI and moisture variables switched to positive ones. The correlations of the GI with air temperature switched from positive to mostly insignificant. The wind’s influence on the trees’ growth changed from negative to insignificant since the 2000s within all elevation belts. Afforestation within the areas of Siberian pine mortality should not be based on the planting of Siberian pine but on drought-tolerant species such as larch (Larix sibirica) and Scots pine (Pinus sylvestris). Full article
(This article belongs to the Special Issue Spatial Distribution and Growth Dynamics of Tree Species)
Show Figures

Figure 1

21 pages, 6785 KiB  
Article
Wildfires in the Larch Range within Permafrost, Siberia
by Viacheslav I. Kharuk, Evgeny G. Shvetsov, Ludmila V. Buryak, Alexei S. Golyukov, Maria L. Dvinskaya and Il’ya A. Petrov
Fire 2023, 6(8), 301; https://doi.org/10.3390/fire6080301 - 4 Aug 2023
Cited by 5 | Viewed by 2868
Abstract
Throughout the larch range, warming leads to frequent fires and an increase in burned areas. We test the hypothesis that fires are an essential natural factor that reset larch regeneration and support the existence of larch forests. The study area included Larix sibirica [...] Read more.
Throughout the larch range, warming leads to frequent fires and an increase in burned areas. We test the hypothesis that fires are an essential natural factor that reset larch regeneration and support the existence of larch forests. The study area included Larix sibirica and L. gmelinii ranges within the permafrost zone. We used satellite-derived and field data, dendrochronology, and climate variables analysis. We found that warming led to an increase in fire frequency and intensity, mean, and extreme (>10,000 ha) burned areas. The burned area is increasing in the northward direction, while fire frequency is decreasing. The fire rate exponentially increases with decreasing soil moisture and increasing air temperature and air drought. We found a contrasting effect of wildfire on regeneration within continuous permafrost and within the southern lowland boundary of the larch range. In the first case, burnt areas regenerated via abounded larch seedlings (up to 500,000+ per ha), whereas the south burns regenerated mostly via broadleaf species or turned into grass communities. After the fire, vegetation GPP was restored to pre-fire levels within 3–15 years, which may indicate that larch forests continue to serve as carbon stock. At the southern edge of the larch range, an amplified fire rate led to the transformation of larch forests into grass and shrub communities. We suggested that the thawing of continuous permafrost would lead to shrinking larch-dominance in the south. Data obtained indicated that recurrent fires are a prerequisite for larch forests’ successful regeneration and resilience within continuous permafrost. It is therefore not necessary to suppress all fires within the zone of larch dominance. Instead, we must focus fire suppression on areas of high natural, social, and economic importance, permitting fires to burn in vast, larch-dominant permafrost landscapes. Full article
(This article belongs to the Special Issue Nature-Based Solutions to Extreme Wildfires)
Show Figures

Figure 1

20 pages, 7473 KiB  
Article
Lightning-Ignited Wildfires beyond the Polar Circle
by Viacheslav I. Kharuk, Maria L. Dvinskaya, Alexey S. Golyukov, Sergei T. Im and Anastasia V. Stalmak
Atmosphere 2023, 14(6), 957; https://doi.org/10.3390/atmos14060957 - 30 May 2023
Cited by 3 | Viewed by 2424
Abstract
Warming-driven lightning frequency increases may influence the burning rate within the circumpolar Arctic and influence vegetation productivity (GPP). We considered wildfire occurrence within the different Arctic sectors (Russian, North American, and Scandinavian). We used satellite-derived (MODIS) data to document changes in the occurrence [...] Read more.
Warming-driven lightning frequency increases may influence the burning rate within the circumpolar Arctic and influence vegetation productivity (GPP). We considered wildfire occurrence within the different Arctic sectors (Russian, North American, and Scandinavian). We used satellite-derived (MODIS) data to document changes in the occurrence and geographic extent of wildfires and vegetation productivity. Correlation analysis was used to determine environmental variables (lightning occurrence, air temperature, precipitation, soil and terrestrial moisture content) associated with a change in wildfires. Within the Arctic, the majority (>75%) of wildfires occurred in Russia (and ca. 65% in Eastern Siberia). We found that lightning occurrence increase and moisture are primary factors that meditate the fire frequency in the Arctic. Throughout the Arctic, warming-driven lightning influences fire occurrence observed mainly in Eastern Siberia (>40% of explained variance). Similar values (ca. 40%) at the scale of Eurasia and the entire Arctic are attributed to Eastern Siberia input. Driving by increased lightning and warming, the fires’ occurrence boundary is shifting northward and already reached the Arctic Ocean coast in Eastern Siberia. The boundary’s extreme shifts synchronized with air temperature extremes (heat waves). Despite the increased burning rate, vegetation productivity rapidly (5–10 y) recovered to pre-fire levels within burns. Together with increasing GPP trends throughout the Arctic, that may offset fires-caused carbon release and maintain the status of the Arctic as a carbon sink. Full article
(This article belongs to the Special Issue Atmospheric Electricity and Fire in a Changing Climate)
Show Figures

Figure 1

20 pages, 9546 KiB  
Article
Subarctic Vegetation under the Mixed Warming and Air Pollution Influence
by Viacheslav I. Kharuk, Il’ya A. Petrov, Sergei T. Im, Alexey S. Golyukov, Maria L. Dvinskaya, Alexander S. Shushpanov, Alexander P. Savchenko and Victoria L. Temerova
Forests 2023, 14(3), 615; https://doi.org/10.3390/f14030615 - 19 Mar 2023
Cited by 10 | Viewed by 1951
Abstract
In the Siberian Arctic, worldwide largest forest mortality was caused by chronical (since the 1940s) influence of SO2 emissions on the larch-dominant communities. We hypothesized that warming might mitigate SO2 influence by increasing trees’ vigor and growth. We studied trees (larch, [...] Read more.
In the Siberian Arctic, worldwide largest forest mortality was caused by chronical (since the 1940s) influence of SO2 emissions on the larch-dominant communities. We hypothesized that warming might mitigate SO2 influence by increasing trees’ vigor and growth. We studied trees (larch, Larix sibirica; spruce, Picea obovate; birch, Betula pendula) and bushes (willow, Salix sp., alder, Duschekia fruticosa) growth dependence on SO2, air temperature, soil temperature and moisture, and precipitation. We sampled woods in severely damaged larch and moderately damaged mixed larch, spruce and birch forests. We generated tree ring chronologies and growth indices (GI). We used Terra/MODIS satellite data for mapping trends of vegetation (NDVI) and productivity (GPP, NPP) indexes. In the larch forest, we found a strong decrease in GI and tree mortality, which lasted until the end of 1990s. In the mixed forest, larch and birch were more resistant to SO2 influence compared to spruce. SO2, air and soil temperatures were mediators of all woody species growth. Winter precipitation stimulated trees growth by mitigating spring water stress. Warming onset in the 2000s led to a pronounced increase of all woody species growth. June–July air and soil temperatures, together with a moderate decrease in SO2 emissions, were the primary drivers of that phenomenon. Increasing trends of GPP, NPP, and NDVI were observed within the large part of earlier damaged forests, which was attributed to trees GI increase together with the expansion of SO2-resistant grasses and bushes. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

18 pages, 5354 KiB  
Article
Pollution and Climatic Influence on Trees in the Siberian Arctic Wetlands
by Viacheslav I. Kharuk, Il’ya A. Petrov, Sergei T. Im, Alexey S. Golyukov, Maria L. Dvinskaya and Alexander S. Shushpanov
Water 2023, 15(2), 215; https://doi.org/10.3390/w15020215 - 4 Jan 2023
Cited by 6 | Viewed by 3615
Abstract
Siberian Arctic wetlands located within the planetary “warming hotspot” experience pronounced climate-driven vegetation cover changes. Together with warming, wetlands, which are located within the influence of Norilsk copper and nickel industry (69.35° N, 88.12° E), have been strongly influenced by industrial pollutions (sulfur [...] Read more.
Siberian Arctic wetlands located within the planetary “warming hotspot” experience pronounced climate-driven vegetation cover changes. Together with warming, wetlands, which are located within the influence of Norilsk copper and nickel industry (69.35° N, 88.12° E), have been strongly influenced by industrial pollutions (sulfur dioxide mostly) since the 1940s. In addition, petroleum products release occurred in 2020 that potentially influenced vegetation vigor. We studied the combined effect of climate warming and pollution on the larch (Larix sibirica Ledeb.) and shrubs’ (Salix spp. and alder, Duschekia fruticosa) growth. Using satellite data (MODIS and Sentinel) processing, we mapped wetlands within the study area. We used on-ground survey, and applied dendrochronology, climate variables, and emissions rate analysis. We sampled woods (kerns) and, based on the tree ring analysis, generated trees and shrubs growth index (GI) chronologies. We analyzed the influence of the SO2 emissions and eco-climate variables (air temperatures, precipitation, soil moisture, and drought index SPEI) on the larch and shrubs GI. We mapped GPP and NPP (gross and net primary productivity) and vegetation index NDVI and temporal trends of these indexes based on the MODIS-derived products. We found that chronic SO2 influence led to larch trees GI decrease that was followed by tree mortality, which was observed until the end of 1990. Since the beginning of the 2000s, the GI of larch and shrubs has increased, which is correlated with elevated air and soil temperature and growth season prolongation, whereas excessive soil moisture negatively influenced GI. Together with that, increasing trends of vegetation indexes (GPP, NPP, and NDVI) were observed on the part of wetland within the zone of former trees’ heavy damage and mortality. The trends began mostly in 2003–2005 and were caused by emissions volume decrease and warming, together with resistant species’ (willows, graminoids, bushes, and birch) growth and invasion. We suggested that increasing productivity trends might partly be attributed to nitrogen fertilization caused by NOx emissions. Finally, we found that diesel fuel spill which happened in 2020 caused no influence on the larch, whereas some aquatic species (mosses mostly) were damaged. Full article
Show Figures

Figure 1

16 pages, 1958 KiB  
Article
Wildfires in the Siberian Arctic
by Viacheslav I. Kharuk, Maria L. Dvinskaya, Sergei T. Im, Alexei S. Golyukov and Kevin T. Smith
Fire 2022, 5(4), 106; https://doi.org/10.3390/fire5040106 - 21 Jul 2022
Cited by 45 | Viewed by 19137
Abstract
Wildfires are increasingly understood as an ecological driver within the entire Arctic biome. Arctic soils naturally store large quantities of C, as peat has formed throughout the Holocene. For the Siberian Arctic, we used observations from the MODIS remote sensing instrument to document [...] Read more.
Wildfires are increasingly understood as an ecological driver within the entire Arctic biome. Arctic soils naturally store large quantities of C, as peat has formed throughout the Holocene. For the Siberian Arctic, we used observations from the MODIS remote sensing instrument to document changes in frequency, geographic extent, and seasonal timing of wildfires as well as vegetation productivity (GPP, NPP, EVI). We also used correlation and regression analysis to identify environmental factors of temperature, precipitation, and lightning occurrence associated with these changes. For the Siberian Arctic as a whole, we found that the decadal frequency of wildfire tripled from the 2001–2010 to the 2011–2020 periods. Increased decadal frequency was accompanied by the increased extent of the burnt area by a factor of 2.6. This increase in fire frequency and extent was not uniform, with the greatest increase in western Siberia with no marked increase for the Siberian Far East. These changes were accompanied by the northward migration of the northern limit of wildfire occurrence and an increase in duration of the wildfire season. We found that annual fire frequency and the extent of burnt areas were related to various combinations of seasonal air temperature, precipitation, ground moisture, and lightning frequency. After fires, vegetation productivity rapidly recovered to pre-fire levels. The northward spread of wildfire into the tundra will release carbon long-stored as peat. The enhanced vegetation productivity, rapid recovery of carbon fixation for burnt areas and the northward migration of boreal forest tree species may offset that release and maintain the current status of the Siberian Arctic as a C sink. Increased wildfire and loss of permafrost may threaten ongoing settlement and industrialization, particularly for western Siberia. Full article
Show Figures

Figure 1

9 pages, 5232 KiB  
Article
Climate-Induced Northerly Expansion of Siberian Silkmoth Range
by Viacheslav I. Kharuk, Sergei T. Im, Kenneth J. Ranson and Mikhail N. Yagunov
Forests 2017, 8(8), 301; https://doi.org/10.3390/f8080301 - 16 Aug 2017
Cited by 27 | Viewed by 6960
Abstract
Siberian silkmoth (Dendrolimus sibiricus Tschetv.) is a dangerous pest that has affected nearly 2.5 × 106 ha of “dark taiga” stands (composed of Abies sibirica, Pinus sibirica and Picea obovata) within the latitude range of 52°–59° N. Here we [...] Read more.
Siberian silkmoth (Dendrolimus sibiricus Tschetv.) is a dangerous pest that has affected nearly 2.5 × 106 ha of “dark taiga” stands (composed of Abies sibirica, Pinus sibirica and Picea obovata) within the latitude range of 52°–59° N. Here we describe a current silkmoth outbreak that is occurring about half degree northward of its formerly documented outbreak range. This outbreak has covered an area of about 800 thousand ha with mortality of conifer stands within an area of about 300 thousand ha. The primary outbreak originated in the year 2014 within stands located on gentle relatively dry southwest slopes at elevations up to 200 m above sea level (a.s.l.) Then the outbreak spread to the mesic areas including northern slopes and the low-elevation forest belts along the Yenisei ridge. Within the outbreak area, the northern Siberian silkmoth population has reduced generation length from two to one year. Our study showed that the outbreak was promoted by droughts in prior years, an increase of the sum of daily temperatures (t > +10 °C), and a decrease in ground cover moisture. Within the outbreak area, secondary pests were also active, including the aggressive Polygraphus proximus bark borer beetle. The outbreak considered here is part of the wide-spread (panzonal) Siberian silkmoth outbreak that originated during 2014–2015 with a range of up to 1000 km in southern Siberia. Our work concludes that observed climate warming opens opportunities for Siberian silkmoth migration into historically outbreak free northern “dark taiga” stands. Full article
Show Figures

Figure 1

9 pages, 2432 KiB  
Article
Wildfires Dynamics in Siberian Larch Forests
by Evgenii I. Ponomarev, Viacheslav I. Kharuk and Kenneth J. Ranson
Forests 2016, 7(6), 125; https://doi.org/10.3390/f7060125 - 17 Jun 2016
Cited by 139 | Viewed by 12095
Abstract
Wildfire number and burned area temporal dynamics within all of Siberia and along a south-north transect in central Siberia (45°–73° N) were studied based on NOAA/AVHRR (National Oceanic and Atmospheric Administration/ Advanced Very High Resolution Radiometer) and Terra/MODIS (Moderate Resolution Imaging Spectroradiometer) data [...] Read more.
Wildfire number and burned area temporal dynamics within all of Siberia and along a south-north transect in central Siberia (45°–73° N) were studied based on NOAA/AVHRR (National Oceanic and Atmospheric Administration/ Advanced Very High Resolution Radiometer) and Terra/MODIS (Moderate Resolution Imaging Spectroradiometer) data and field measurements for the period 1996–2015. In addition, fire return interval (FRI) along the south-north transect was analyzed. Both the number of forest fires and the size of the burned area increased during recent decades (p < 0.05). Significant correlations were found between forest fires, burned areas and air temperature (r = 0.5) and drought index (The Standardized Precipitation Evapotranspiration Index, SPEI) (r = −0.43). Within larch stands along the transect, wildfire frequency was strongly correlated with incoming solar radiation (r = 0.91). Fire danger period length decreased linearly from south to north along the transect. Fire return interval increased from 80 years at 62° N to 200 years at the Arctic Circle (66°33’ N), and to about 300 years near the northern limit of closed forest stands (about 71°+ N). That increase was negatively correlated with incoming solar radiation (r = −0.95). Full article
Show Figures

Figure 1

Back to TopTop