Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Authors = Timothy O. Ajiboye ORCID = 0000-0001-5418-3234

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3802 KiB  
Article
Antiviral Potential of Selected N-Methyl-N-phenyl Dithiocarbamate Complexes against Human Immunodeficiency Virus (HIV)
by Hazel T. Mufhandu, Oluwafemi S. Obisesan, Timothy O. Ajiboye, Sabelo D. Mhlanga and Damian C. Onwudiwe
Microbiol. Res. 2023, 14(1), 355-370; https://doi.org/10.3390/microbiolres14010028 - 8 Mar 2023
Cited by 11 | Viewed by 3008
Abstract
Despite the use of highly active antiretroviral therapy approved by the United States Food and Drug Administration (FDA) for the treatment of human immunodeficiency virus (HIV) infection, HIV remains a public health concern due to the inability of the treatment to eradicate the [...] Read more.
Despite the use of highly active antiretroviral therapy approved by the United States Food and Drug Administration (FDA) for the treatment of human immunodeficiency virus (HIV) infection, HIV remains a public health concern due to the inability of the treatment to eradicate the virus. In this study, N-methyl-N-phenyl dithiocarbamate complexes of indium(III), bismuth(III), antimony(III), silver(I), and copper(II) were synthesized. The complexes were characterized by thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). The N-methyl-N-phenyl dithiocarbamate complexes were then evaluated for their antiviral effects against HIV-1 subtypes A (Q168), B (QHO.168), and C (CAP210 and ZM53). The results showed that the copper(II)-bis (N-methyl-N-phenyl dithiocarbamate) complex had a neutralization efficiency of 94% for CAP210, 54% for ZM53, 45% for Q168, and 63% for QHO.168. The silver(I)-bis (N-methyl-N-phenyl dithiocarbamate) complex showed minimal neutralization efficiency against HIV, while indium(III) and antimony(III) N-methyl-N-phenyl dithiocarbamate complexes had no antiviral activity against HIV-1. The findings revealed that copper(II)-bis (N-methyl-N-phenyl dithiocarbamate), with further improvement, could be explored as an alternative entry inhibitor for HIV. Full article
Show Figures

Figure 1

20 pages, 10100 KiB  
Article
Photocatalytic Reduction of Hexavalent Chromium Using Cu3.21Bi4.79S9/g-C3N4 Nanocomposite
by Timothy O. Ajiboye, Opeyemi A. Oyewo, Riadh Marzouki and Damian C. Onwudiwe
Catalysts 2022, 12(10), 1075; https://doi.org/10.3390/catal12101075 - 20 Sep 2022
Cited by 17 | Viewed by 2910
Abstract
The photocatalytic reduction of hexavalent chromium, Cr(VI), to the trivalent species, Cr(III), has continued to inspire the synthesis of novel photocatalysts that are capable of achieving the task of converting Cr(VI) to the less toxic and more useful species. In this study, a [...] Read more.
The photocatalytic reduction of hexavalent chromium, Cr(VI), to the trivalent species, Cr(III), has continued to inspire the synthesis of novel photocatalysts that are capable of achieving the task of converting Cr(VI) to the less toxic and more useful species. In this study, a novel functionalized graphitic carbon nitride (Cu3.21Bi4.79S9/gC3N4) was synthesized and characterized by using X-ray diffraction (XRD), thermogravimetry analysis (TGA), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), and scanning electron microscope (SEM). The composite was used for the photocatalytic reduction of hexavalent chromium, Cr(VI), under visible light irradiation. A 92.77% efficiency of the reduction was achieved at pH 2, using about 10 mg of the photocatalyst and 10 mg/L of the Cr(VI) solution. A pseudo-first-order kinetic study indicated 0.0076 min−1, 0.0286 min−1, and 0.0393 min−1 rate constants for the nanoparticles, pristine gC3N4, and the nanocomposite, respectively. This indicated an enhancement in the rate of reduction by the functionalized gC3N4 by 1.37- and 5.17-fold compared to the pristine gC3N4 and Cu3.21Bi4.79S9, respectively. A study of how the presence of other contaminants including dye (bisphenol A) and heavy-metal ions (Ag(I) and Pb(II)) in the system affects the photocatalytic process showed a reduction in the rate from 0.0393 min−1 to 0.0019 min−1 and 0.0039 min−1, respectively. Finally, the radical scavenging experiments showed that the main active species for the photocatalytic reduction of Cr(VI) are electrons (e), hydroxyl radicals (·OH), and superoxide (·O2). This study shows the potential of functionalized gC3N4 as sustainable materials in the removal of hexavalent Cr from an aqueous solution. Full article
(This article belongs to the Special Issue Applications of Nanomaterials in Environmental Catalysis)
Show Figures

Figure 1

36 pages, 8018 KiB  
Review
The Versatility in the Applications of Dithiocarbamates
by Timothy O. Ajiboye, Titilope T. Ajiboye, Riadh Marzouki and Damian C. Onwudiwe
Int. J. Mol. Sci. 2022, 23(3), 1317; https://doi.org/10.3390/ijms23031317 - 24 Jan 2022
Cited by 90 | Viewed by 10767
Abstract
Dithiocarbamate ligands have the ability to form stable complexes with transition metals, and this chelating ability has been utilized in numerous applications. The complexes have also been used to synthesize other useful compounds. Here, the up-to-date applications of dithiocarbamate ligands and complexes are [...] Read more.
Dithiocarbamate ligands have the ability to form stable complexes with transition metals, and this chelating ability has been utilized in numerous applications. The complexes have also been used to synthesize other useful compounds. Here, the up-to-date applications of dithiocarbamate ligands and complexes are extensively discussed. Some of these are their use as enzyme inhibitor and treatment of HIV and other diseases. The application as anticancer, antimicrobial, medical imaging and anti-inflammatory agents is examined. Moreover, the application in the industry as vulcanization accelerator, froth flotation collector, antifouling, coatings, lubricant additives and sensors is discussed. The various ways in which they have been employed in synthesis of other compounds are highlighted. Finally, the agricultural uses and remediation of heavy metals via dithiocarbamate compounds are comprehensively discussed. Full article
(This article belongs to the Collection Feature Papers in Bioactives and Nutraceuticals)
Show Figures

Figure 1

26 pages, 3476 KiB  
Review
Photocatalytic Inactivation as a Method of Elimination of E. coli from Drinking Water
by Timothy O. Ajiboye, Stephen O. Babalola and Damian C. Onwudiwe
Appl. Sci. 2021, 11(3), 1313; https://doi.org/10.3390/app11031313 - 1 Feb 2021
Cited by 35 | Viewed by 8032
Abstract
The presence of microorganisms, specifically the Escherichia coli, in drinking water is of global concern. This is mainly due to the health implications of these pathogens. Several conventional methods have been developed for their removal; however, this pathogen is still found in [...] Read more.
The presence of microorganisms, specifically the Escherichia coli, in drinking water is of global concern. This is mainly due to the health implications of these pathogens. Several conventional methods have been developed for their removal; however, this pathogen is still found in most drinking water. In the continuous quest for a more effective removal approach, photocatalysis has been considered as an alternative method for the elimination of pathogens including E. coli from water. Photocatalysis has many advantages compared to the conventional methods. It offers the advantage of non-toxicity and utilizes the energy from sunlight, thereby making it a completely green route. Since most photocatalysts could only be active in the ultraviolet region of the solar spectrum, which is less than 5% of the entire spectrum, the challenge associated with photocatalysis is the design of a system for the effective harvest and complete utilization of the solar energy for the photocatalytic process. In this review, different photocatalysts for effective inactivation of E. coli and the mechanism involved in the process were reviewed. Various strategies that have been adopted in order to modulate the band gap energy of these photocatalysts have been explored. In addition, different methods of estimating and detecting E. coli in drinking water were presented. Furthermore, different photocatalytic reactor designs for photocatalytic inactivation of E. coli were examined. Finally, the kinetics of E. coli inactivation was discussed. Full article
Show Figures

Figure 1

24 pages, 3666 KiB  
Review
Recent Strategies for Environmental Remediation of Organochlorine Pesticides
by Timothy O. Ajiboye, Alex T. Kuvarega and Damian C. Onwudiwe
Appl. Sci. 2020, 10(18), 6286; https://doi.org/10.3390/app10186286 - 10 Sep 2020
Cited by 66 | Viewed by 12849
Abstract
The amount of organochlorine pesticides in soil and water continues to increase; their presence has surpassed maximum acceptable concentrations. Thus, the development of different removal strategies has stimulated a new research drive in environmental remediation. Different techniques such as adsorption, bioremediation, phytoremediation and [...] Read more.
The amount of organochlorine pesticides in soil and water continues to increase; their presence has surpassed maximum acceptable concentrations. Thus, the development of different removal strategies has stimulated a new research drive in environmental remediation. Different techniques such as adsorption, bioremediation, phytoremediation and ozonation have been explored. These techniques aim at either degrading or removal of the organochlorine pesticides from the environment but have different drawbacks. Heterogeneous photocatalysis is a relatively new technique that has become popular due to its ability to completely degrade different toxic pollutants—instead of transferring them from one medium to another. The process is driven by a renewable energy source, and semiconductor nanomaterials are used to construct the light energy harvesting assemblies due to their rich surface states, large surface areas and different morphologies compared to their corresponding bulk materials. These make it a green alternative that is cost-effective for organochlorine pesticides degradation. This has also opened up new ways to utilize semiconductors and solar energy for environmental remediation. Herein, the focus of this review is on environmental remediation of organochlorine pesticides, the different techniques of their removal from the environment, the advantages and disadvantages of the different techniques and the use of specific semiconductors as photocatalysts. Full article
Show Figures

Figure 1

Back to TopTop