Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = T. P. Burt

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1073 KiB  
Article
Rainfall Distributions in Sri Lanka in Time and Space: An Analysis Based on Daily Rainfall Data
by T. P. Burt and K. D. N. Weerasinghe
Climate 2014, 2(4), 242-263; https://doi.org/10.3390/cli2040242 - 26 Sep 2014
Cited by 64 | Viewed by 19743
Abstract
Daily rainfall totals are analyzed for the main agro-climatic zones of Sri Lanka for the period 1976–2006. The emphasis is on daily rainfall rather than on longer-period totals, in particular the number of daily falls exceeding given threshold totals. For one station (Mapalana), [...] Read more.
Daily rainfall totals are analyzed for the main agro-climatic zones of Sri Lanka for the period 1976–2006. The emphasis is on daily rainfall rather than on longer-period totals, in particular the number of daily falls exceeding given threshold totals. For one station (Mapalana), where a complete daily series is available from 1950, a longer-term perspective on changes over half a century is provided. The focus here is particularly on rainfall in March and April, given the sensitivity of agricultural decisions to early southwest monsoon rainfall at the beginning of the Yala cultivation season but other seasons are also considered, in particular the northeast monsoon. Rainfall across Sri Lanka over three decades is investigated in relation to the main atmospheric drivers known to affect climate in the region: sea surface temperatures in the Pacific and Indian Oceans, of which the former are shown to be more important. The strong influence of El Niño and La Niña phases on various aspects of the daily rainfall distribution in Sri Lanka is confirmed: positive correlations with Pacific sea-surface temperatures during the north east monsoon and negative correlations at other times. It is emphasized in the discussion that Sri Lanka must be placed in its regional context and it is important to draw on regional-scale research across the Indian subcontinent and the Bay of Bengal. Full article
Show Figures

Figure 1

26 pages, 1912 KiB  
Article
Intercomparison of Evapotranspiration Over the Savannah Volta Basin in West Africa Using Remote Sensing Data
by S. Opoku-Duah, D. N.M. Donoghue and T. P. Burt
Sensors 2008, 8(4), 2736-2761; https://doi.org/10.3390/s8042736 - 17 Apr 2008
Cited by 23 | Viewed by 12371
Abstract
This paper compares evapotranspiration estimates from two complementary satellite sensors – NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) and ESA’s ENVISAT Advanced Along-Track Scanning Radiometer (AATSR) over the savannah area of the Volta basin in West Africa. This was achieved through solving for evapotranspiration [...] Read more.
This paper compares evapotranspiration estimates from two complementary satellite sensors – NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) and ESA’s ENVISAT Advanced Along-Track Scanning Radiometer (AATSR) over the savannah area of the Volta basin in West Africa. This was achieved through solving for evapotranspiration on the basis of the regional energy balance equation, which was computationally-driven by the Surface Energy Balance Algorithm for Land algorithm (SEBAL). The results showed that both sensors are potentially good sources of evapotranspiration estimates over large heterogeneous landscapes. The MODIS sensor measured daily evapotranspiration reasonably well with a strong spatial correlation (R2=0.71) with Landsat ETM+ but underperformed with deviations up to ~2.0 mm day-1, when compared with local eddy correlation observations and the Penman-Monteith method mainly because of scale mismatch. The AATSR sensor produced much poorer correlations (R2=0.13) with Landsat ETM+ and conventional ET methods also because of differences in atmospheric correction and sensor calibration over land. Full article
(This article belongs to the Special Issue Remote Sensing of Natural Resources and the Environment)
Show Figures

Back to TopTop