Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Authors = Syed Farooq Adil ORCID = 0000-0002-2768-1235

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3028 KiB  
Article
Revolutionizing Hydrogen Production: Unveiling the Role of Liquid Metals in Methane Pyrolysis over Iron Catalysts Supported on Titanium Dioxide and Alumina
by Hamid Ahmed, Amal BaQais, Fekri Abdulraqeb Ahmed Ali, Ahmed I. Osman, Anis H. Fakeeha, Ahmed E. Abasaeed, Ahmed A. Ibrahim, Syed Farooq Adil, Tahani Saad Algarni and Ahmed S. Al-Fatesh
Catalysts 2025, 15(7), 631; https://doi.org/10.3390/catal15070631 - 27 Jun 2025
Viewed by 496
Abstract
Catalytic methane decomposition offers an attractive and sustainable pathway for producing COx-free hydrogen and valuable carbon nanotubes. This work investigates the innovative use of liquid metals, particularly gallium and indium, as promoters for iron catalysts based on a titanium dioxide and [...] Read more.
Catalytic methane decomposition offers an attractive and sustainable pathway for producing COx-free hydrogen and valuable carbon nanotubes. This work investigates the innovative use of liquid metals, particularly gallium and indium, as promoters for iron catalysts based on a titanium dioxide and alumina composite to improve this process even more. In a fixed-bed reactor operating at 800 °C and atmospheric pressure, all catalyst activities for methane decomposition were thoroughly assessed while keeping the gas hourly space velocity at 6 L/g h. Surface area and porosity, H2-temperature programmed reduction/oxidation, X-ray diffraction, Raman spectroscopy, scanning transmission electron microscopy, and thermogravimetry analysis were utilized to investigate the physicochemical properties of the catalyst. The result showed that iron supported on a titanium-alumina catalyst exhibited higher activity, stability, and reproducibility with a methane conversion of 90% and hydrogen production of 81% after three cycles, with 240 min for each cycle and stability for 480 min. In contrast, the liquid metal-promoted catalysts improved the metal-support interaction and textural properties, such as surface area, pore volume, and particle dispersion of the catalysts. Still, the catalytic efficiency significantly improved. However, the gallium-promoted catalyst displayed excellent reusability. The characterization of the spent catalyst proved that both the iron supported on a titanium-alumina and its gallium-promoted derivative produced graphitic carbon; on the contrary, the indium-promoted catalyst produced amorphous carbon. These results demonstrate how liquid metal promoters can be used to adjust the characteristics of catalysts, providing opportunities for improved reusability and regulated production of carbon byproducts during methane decomposition. Full article
Show Figures

Figure 1

29 pages, 1335 KiB  
Systematic Review
Metformin: A Dual-Role Player in Cancer Treatment and Prevention: A Comprehensive Systematic Review and Meta-Analysis
by Imran Rangraze, Adil Farooq Wali, Mohamed El-Tanani, Mohamed Anas Patni, Syed Arman Rabbani, Rasha Babiker, Shakta Mani Satyam, Yahia El-Tanani and Manfredi Rizzo
Medicina 2025, 61(6), 1021; https://doi.org/10.3390/medicina61061021 - 30 May 2025
Viewed by 1316
Abstract
Background and Objectives: Metformin is said to reduce the incidences and deaths resulting from cancer in patients suffering from type 2 diabetes mellitus, but the results have been inconsistent. Perform a systematic review and meta-analysis concentrating on the different outcomes of several [...] Read more.
Background and Objectives: Metformin is said to reduce the incidences and deaths resulting from cancer in patients suffering from type 2 diabetes mellitus, but the results have been inconsistent. Perform a systematic review and meta-analysis concentrating on the different outcomes of several cancers while taking into account the impact of metformin use. Materials and Methods: As of 15 October 2024, the literature for Medline, Embase, and Web of Science was systematically searched. ROBINS-I and the RoB 2 tool were used for assessing the risk of bias in observational studies and randomized controlled trials (RCTs), respectively. The strength of the evidence with respect to the GRADE criteria was checked. Random effects meta-analyses were conducted alongside sensitivity analyses, subgroup analyses, and meta-regressions. By utilizing funnel plots as well as Egger’s test and trim-and-fill analysis, publication bias was evaluated. Results: In total, 65 studies were included in the final analyses: Metformin intake was linked to a lower risk of cancer (RR 0.72; 95% CI: 0.64–0.81, I2 = 45%). Significant reductions were observed in breast cancer (RR 0.68; 95% CI: 0.55–0.83) and colorectal cancers (RR 0.62; 95% CI: 0.51–0.76). Evidence certainty fluctuated from moderate to low, though analyses confirmed the results. Plofs funded the publication bias, but adjustment in trim-and-fill did not change the outcome significantly. Conclusions: Metformin intake seems to lower the chances of developing several types of cancers, especially breast and colorectal cancers, but the observational designs hinder determining the causal factors for observational studies. There is a need for large RCTs. Full article
Show Figures

Figure 1

17 pages, 3691 KiB  
Article
Lamellar Orientation Analysis and Mechanical Properties of Polyethylene in Stretch-Induced Crystallization
by Mohammed Althaf Hussain, Takeshi Aoyagi, Takeshi Kikutani, Wataru Takarada, Takashi Yamamoto, Syed Farooq Adil and Shigeru Yao
Polymers 2025, 17(11), 1450; https://doi.org/10.3390/polym17111450 - 23 May 2025
Viewed by 617
Abstract
Polyethylene films prepared from orientation-dependent methods are strong and resilient, have reduced permeability, and possess higher tensile strength. A molecular dynamics investigation is performed to reveal the emergence of chain folding and lamellar crystal axis alignment along the stretching axis (tilt angle) in [...] Read more.
Polyethylene films prepared from orientation-dependent methods are strong and resilient, have reduced permeability, and possess higher tensile strength. A molecular dynamics investigation is performed to reveal the emergence of chain folding and lamellar crystal axis alignment along the stretching axis (tilt angle) in the stretch-induced crystallization (SIC) of high-density polyethylene (HDPE), which mimics the internal structure of the fiber. The morphology in phase transition is assessed by the total density (ρ), degree of crystallinity (%χc), average number of entanglements per chain (<Z>), elastic modulus of the mechanical property, and lamellar chain tilt angle (θ) from the stretch-axis. The simulation emphasizes crystal formation by changing the total ρ from 0.85 g·cm−3 to 0.90 g·cm−3 and by tracking the gradual increase in % χc during stretching (~40%) and relaxation processes (~50%). Moreover, the primitive path analysis-based <Z> decreased during stretching and further in the subsequent relaxation process, supporting the alignment and thickening of the lamellar chain structure and chain folding from the random coil structure. The elastic modulus of ~350–400 MPa evidences the high alignment of the lamellar chains along the stretching axis. Consistent with the chain tilt angle of the HDPE in SAXS/WAXS experiments, the model estimated the lamellar chain title angle (θ) relative to the stretching axis to be ~20–35°. In conclusion, SIC is a convenient approach for simulating high stiffness, tensile strength, reduced permeability, and chain alignment in fiber film models, which can help design new fiber morphology-based polymers or composites. Full article
Show Figures

Graphical abstract

26 pages, 2519 KiB  
Review
Repurposing Anthelmintic Drugs for COVID-19 Treatment: A Comprehensive Meta-Analysis of Randomized Clinical Trials on Ivermectin and Mebendazole
by Shakta Mani Satyam, Mohamed El-Tanani, Mohamed Anas Patni, Abdul Rehman, Adil Farooq Wali, Imran Rashid Rangraze, Rasha Babiker, Syed Arman Rabbani, Yahia El-Tanani and Manfredi Rizzo
Antibiotics 2025, 14(5), 459; https://doi.org/10.3390/antibiotics14050459 - 30 Apr 2025
Cited by 1 | Viewed by 3568
Abstract
Background: The COVID-19 pandemic necessitated the urgent exploration of therapeutic options, including drug repurposing. Anthelmintic drugs such as ivermectin and mebendazole have garnered interest due to their potential antiviral and immunomodulatory properties. However, conflicting evidence from randomized clinical trials (RCTs) necessitates a [...] Read more.
Background: The COVID-19 pandemic necessitated the urgent exploration of therapeutic options, including drug repurposing. Anthelmintic drugs such as ivermectin and mebendazole have garnered interest due to their potential antiviral and immunomodulatory properties. However, conflicting evidence from randomized clinical trials (RCTs) necessitates a comprehensive meta-analysis to determine their efficacy and safety in COVID-19 management. Objective: This meta-analysis evaluates the clinical efficacy of ivermectin and mebendazole in treating COVID-19 by analyzing their impact on viral clearance, symptom resolution, hospitalization duration, and safety profiles. Methods: A systematic search of Scopus, PubMed, Embase, and the Cochrane Library was conducted following PRISMA guidelines to identify RCTs published up to February 2025. Eligible studies included adult patients with confirmed COVID-19 who received ivermectin or mebendazole compared with a placebo or standard of care. Data extraction and risk of bias assessment were performed using the Cochrane Risk of Bias Tool. Statistical heterogeneity was evaluated using the I2 statistic, and pooled effect sizes were calculated for primary clinical outcomes. Results: Twenty-three RCTs (n = 12,345) were included, with twenty-one studies on ivermectin and two on mebendazole. The pooled analysis suggested no statistically significant improvement in viral clearance (p = 0.39), hospitalization duration (p = 0.15), or symptom resolution (p = 0.08) with ivermectin or mebendazole. However, individual studies indicated potential benefits, particularly for mebendazole, in reducing viral load and inflammation. Both drugs exhibited favorable safety profiles, with no significant increase in adverse events. Conclusions: The promising propensities observed in selected studies underscore the potential of ivermectin and mebendazole as adjunct therapies for COVID-19. With well-established safety profiles, immunomodulatory effects, and affordability, these drugs present strong candidates for further exploration. Advancing research through well-designed, large-scale RCTs will help unlock their full therapeutic potential and expand treatment options in the fight against COVID-19. Full article
(This article belongs to the Special Issue Antimicrobials Agents: Latest Advances and Prospects)
Show Figures

Figure 1

17 pages, 2557 KiB  
Systematic Review
Comparative Efficacy of Immune Checkpoint Inhibitors and Therapeutic Vaccines in Solid Tumors: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
by Rasha Babiker, Adil Farooq Wali, Mohamed El-Tanani, Syed Arman Rabbani, Imran Rangraze, Shakta Mani Satyam, Mohamed Anas Patni and Yahia El-Tanani
Vaccines 2025, 13(4), 423; https://doi.org/10.3390/vaccines13040423 - 17 Apr 2025
Viewed by 799
Abstract
Background: Immune checkpoint inhibitors (ICIs) and therapeutic vaccines have emerged as promising immunotherapeutic strategies for solid tumors. However, their comparative efficacy in improving overall survival (OS) remains unclear. This systematic review and meta-analysis aimed to evaluate the efficacy of ICIs and therapeutic [...] Read more.
Background: Immune checkpoint inhibitors (ICIs) and therapeutic vaccines have emerged as promising immunotherapeutic strategies for solid tumors. However, their comparative efficacy in improving overall survival (OS) remains unclear. This systematic review and meta-analysis aimed to evaluate the efficacy of ICIs and therapeutic vaccines in improving OS in patients with solid tumors. Methods: A comprehensive search was conducted across PubMed, Cochrane Library, Embase, and Clinical Trials.gov for randomized controlled trials (RCTs) published between 1 January 2010 and 31 December 2024. Studies comparing ICIs or therapeutic vaccines against control treatments (placebo, standard of care, or active comparators) in adults with solid tumors were included. The primary outcome was OS, and data were pooled using RevMan (web). Risk of bias was assessed using the Cochrane Risk of Bias tool. Results: Thirteen RCTs involving 10,991 participants were included. A total of 5722 of them were treated with therapeutic vaccines or checkpoint inhibitors. Therapeutic vaccines demonstrated insignificant improvement in OS, with a pooled mean difference of 1.89 months (95% CI: −0.54–4.31; P = 0.13), although with homogeneity (I2 = 0%). ICIs showed a statistically significant OS benefit, with a pooled mean difference of 1.32 months (95% CI: 0.62–2.02; P = 0.0002) and low heterogeneity (I2 = 12%). Conclusions: Therapeutic vaccines provide a larger but less consistent benefit, whereas ICIs offer modest but more consistent survival advantage. These findings support the need for personalized immunotherapy approaches as well as further research to identify predictive biomarkers and optimize treatment strategies by acquiring deep insights into the TME dynamic and behaviors. Full article
Show Figures

Figure 1

29 pages, 2732 KiB  
Systematic Review
Impact of Lifestyle Modifications on Cancer Mortality: A Systematic Review and Meta-Analysis
by Syed Arman Rabbani, Mohamed Anas Patni, Mohamed El-Tanani, Imran Rashid Rangraze, Adil Farooq Wali, Rasha Babiker, Shakta Mani Satyam, Yahia El-Tanani and Abdelrahman Adel Mohamed Shehata Almetwally
Medicina 2025, 61(2), 307; https://doi.org/10.3390/medicina61020307 - 10 Feb 2025
Cited by 3 | Viewed by 2737
Abstract
Background and Objectives: Cancer survival poses significant challenges in oncology, with lifestyle modifications increasingly recognized as crucial in modifying patient outcomes post-diagnosis. This meta-analysis aims to systematically evaluate the impact of various lifestyle interventions on cancer survival across different types of cancer. [...] Read more.
Background and Objectives: Cancer survival poses significant challenges in oncology, with lifestyle modifications increasingly recognized as crucial in modifying patient outcomes post-diagnosis. This meta-analysis aims to systematically evaluate the impact of various lifestyle interventions on cancer survival across different types of cancer. Methods: A comprehensive literature search of electronic databases including PubMed, Scopus and Cochrane was performed to identify relevant studies up to 30 November 2024. Relevant studies were chosen and data were extracted and analyzed using SPSS Version 29.0 software. Results: Our systematic review included data from 98 studies involving a total of 1,461,834 cancer patients to evaluate the impact of lifestyle factors on cancer survival. Out of these, 64 studies were included in the meta-analysis. Our meta-analysis demonstrates that adherence to specific dietary patterns significantly improves cancer-specific outcomes. The Healthy Eating Index (HEI) diet was associated with a reduction in cancer-specific mortality (pooled log HR: −0.22; 95% CI: [−0.32, −0.12]; p < 0.001). Similar benefits were observed with the Mediterranean diet (aMED), which also reduced cancer mortality and recurrence (pooled log HR: −0.24; 95% CI: [−0.40, −0.07]; p < 0.001), and the Dietary Approaches to Stop Hypertension (DASH) diet (pooled log HR: −0.22; 95% CI: [−0.33, −0.12]; p < 0.001). Additionally, general dietary improvements were beneficial for breast cancer-specific mortality across 17 cohort studies (pooled log HR: −0.15; 95% CI: [−0.25, −0.06]; p < 0.001). Engaging in any form of physical activity post-diagnosis was associated with significant improvements in cancer-specific mortality or recurrence (pooled log HR: −0.31; 95% CI: [−0.38, −0.25]; p < 0.001). Participants who ceased smoking after diagnosis exhibited more favorable cancer outcomes (pooled log HR: −0.33; 95% CI: [−0.42, −0.24]; p < 0.001), with smoking cessation notably reducing cancer-specific mortality among lung cancer survivors (pooled log HR: −0.34; 95% CI: [−0.48, −0.20]; p < 0.001). Additionally, reducing alcohol intake post-diagnosis significantly improved cancer outcomes (pooled log HR: −0.26; 95% CI: [−0.33, −0.19]; p < 0.001). Alcohol moderation in gastrointestinal tract cancer survivors specifically decreased both cancer-specific mortality and recurrence (pooled log HR: −0.22; 95% CI: [−0.29, −0.15]; p < 0.001). Conclusions: Lifestyle modifications after cancer diagnosis significantly improve cancer-specific outcomes. Specific dietary patterns, increased physical activity, smoking cessation, and reduced alcohol intake are all associated with lower cancer-specific mortality. Integrating these lifestyle changes into oncology care may enhance patient survival and quality of life. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

17 pages, 4619 KiB  
Article
Alumina Coated with Titanium Dioxide Supported Iron for Hydrogen Production and Carbon Nanotubes via Methane Decomposition
by Hamid Ahmed, Anis H. Fakeeha, Fayez M. Al-Alweet, Syed Farooq Adil, Ahmed E. Abasaeed, Ahmed A. Ibrahim, Ahmed I. Osman, Salwa B. Alreshaidan and Ahmed S. Al-Fatesh
Catalysts 2025, 15(2), 122; https://doi.org/10.3390/catal15020122 - 27 Jan 2025
Cited by 3 | Viewed by 1236
Abstract
Research on converting methane to hydrogen has gained more attention due to the availability of methane reserves and the global focus on sustainable and environmentally friendly energy sources. The decomposition of methane through catalysis (CDM) has excellent potential to produce clean hydrogen and [...] Read more.
Research on converting methane to hydrogen has gained more attention due to the availability of methane reserves and the global focus on sustainable and environmentally friendly energy sources. The decomposition of methane through catalysis (CDM) has excellent potential to produce clean hydrogen and valuable carbon products. However, developing catalysts that are both active and stable is a highly challenging area of research. Using titanium isopropoxide as a precursor and different loadings of TiO2 (10 wt.%, 20 wt.%, and 30 wt.%), alumina has been coated with TiO2 in a single-step hydrothermal synthesis procedure. These synthesized materials are examined as possible support materials for CDM; different wt.% of iron is loaded onto the synthesized support material using a co-precipitation method to enhance the methane conversion via a decomposition reaction. The result shows that the 20 wt.% Fe/20 wt.% Ti-Al (20Fe/20Ti-Al) catalyst demonstrates remarkable stability and exhibits superior performance, reaching a conversion rate of methane of 94% with hydrogen production of 84% after 4 h. The outstanding performance is primarily due to the moderate interaction between the support and the active metal, as well as the presence of the rutile phase. The 20Fe/30Ti-Al catalyst exhibited lower activity than the other catalysts, achieving a methane conversion of 85% and hydrogen production of 79% during the reaction. Raman and XRD analysis revealed that all the catalysts generated graphitic carbon, with the 20Fe/20Ti-Al catalyst specifically producing single-walled carbon nanotubes. Full article
(This article belongs to the Section Industrial Catalysis)
Show Figures

Figure 1

42 pages, 2557 KiB  
Review
Deciphering the Role of Cancer Stem Cells: Drivers of Tumor Evolution, Therapeutic Resistance, and Precision Medicine Strategies
by Mohamed El-Tanani, Syed Arman Rabbani, Shakta Mani Satyam, Imran Rashid Rangraze, Adil Farooq Wali, Yahia El-Tanani and Alaa A. A. Aljabali
Cancers 2025, 17(3), 382; https://doi.org/10.3390/cancers17030382 - 24 Jan 2025
Cited by 8 | Viewed by 3549
Abstract
Cancer stem cells (CSCs) play a central role in tumor progression, recurrence, and resistance to conventional therapies, making them a critical focus in oncology research. This review provides a comprehensive analysis of CSC biology, emphasizing their self-renewal, differentiation, and dynamic interactions with the [...] Read more.
Cancer stem cells (CSCs) play a central role in tumor progression, recurrence, and resistance to conventional therapies, making them a critical focus in oncology research. This review provides a comprehensive analysis of CSC biology, emphasizing their self-renewal, differentiation, and dynamic interactions with the tumor microenvironment (TME). Key signaling pathways, including Wnt, Notch, and Hedgehog, are discussed in detail to highlight their potential as therapeutic targets. Current methodologies for isolating CSCs are critically examined, addressing their advantages and limitations in advancing precision medicine. Emerging technologies, such as CRISPR/Cas9 and single-cell sequencing, are explored for their transformative potential in unraveling CSC heterogeneity and informing therapeutic strategies. The review also underscores the pivotal role of the TME in supporting CSC survival, promoting metastasis, and contributing to therapeutic resistance. Challenges arising from CSC-driven tumor heterogeneity and dormancy are analyzed, along with strategies to mitigate these barriers, including novel therapeutics and targeted approaches. Ethical considerations and the integration of artificial intelligence in designing CSC-specific therapies are discussed as essential elements of future research. The manuscript advocates for a multi-disciplinary approach that combines innovative technologies, advanced therapeutics, and collaborative research to address the complexities of CSCs. By bridging existing gaps in knowledge and fostering advancements in personalized medicine, this review aims to guide the development of more effective cancer treatment strategies, ultimately improving patient outcomes. Full article
(This article belongs to the Special Issue Molecular Targeted Therapy in Cancer)
Show Figures

Graphical abstract

17 pages, 5405 KiB  
Article
Coarse-Grained Simulations on Polyethylene Crystal Network Formation and Microstructure Analysis
by Mohammed Althaf Hussain, Takashi Yamamoto, Syed Farooq Adil and Shigeru Yao
Polymers 2024, 16(7), 1007; https://doi.org/10.3390/polym16071007 - 7 Apr 2024
Cited by 1 | Viewed by 2557
Abstract
Understanding and characterizing semi-crystalline models with crystalline and amorphous segments is crucial for industrial applications. A coarse-grained molecular dynamics (CGMD) simulations study probed the crystal network formation in high-density polyethylene (HDPE) from melt, and shed light on tensile properties for microstructure analysis. Modified [...] Read more.
Understanding and characterizing semi-crystalline models with crystalline and amorphous segments is crucial for industrial applications. A coarse-grained molecular dynamics (CGMD) simulations study probed the crystal network formation in high-density polyethylene (HDPE) from melt, and shed light on tensile properties for microstructure analysis. Modified Paul–Yoon–Smith (PYS/R) forcefield parameters are used to compute the interatomic forces among the PE chains. The isothermal crystallization at 300 K and 1 atm predicts the multi-nucleus crystal growth; moreover, the lamellar crystal stems and amorphous region are alternatively oriented. A one-dimensional density distribution along the alternative lamellar stems further confirms the ordering of the lamellar-stack orientation. Using this plastic model preparation approach, the semi-crystalline model density (ρcr) of ca. 0.913 g·cm−3 and amorphous model density (ρam) of ca. 0.856 g·cm−3 are obtained. Furthermore, the ratio of ρcr/ρam ≈ 1.06 is in good agreement with computational (≈1.096) and experimental (≈1.14) data, ensuring the reliability of the simulations. The degree of crystallinity (χc) of the model is ca. 52% at 300 K. Nevertheless, there is a gradual increase in crystallinity over the specified time, indicating the alignment of the lamellar stems during crystallization. The characteristic stress–strain curve mimicking tensile tests along the z-axis orientation exhibits a reversible sharp elastic regime, tensile strength at yield ca. 100 MPa, and a non-reversible tensile strength at break of 350%. The cavitation mechanism embraces the alignment of lamellar stems along the deformation axis. The study highlights an explanatory model of crystal network formation for the PE model using a PYS/R forcefield, and it produces a microstructure with ordered lamellar and amorphous segments with robust mechanical properties, which aids in predicting the microstructure–mechanical property relationships in plastics under applied forces. Full article
(This article belongs to the Special Issue Polymer Dynamics: From Single Chains to Networks and Gels)
Show Figures

Graphical abstract

24 pages, 9841 KiB  
Article
Preparation and Characterization of High-Density Polyethylene with Alternating Lamellar Stems Using Molecular Dynamics Simulations
by Mohammed Althaf Hussain, Takashi Yamamoto, Syed Farooq Adil and Shigeru Yao
Polymers 2024, 16(2), 304; https://doi.org/10.3390/polym16020304 - 22 Jan 2024
Cited by 3 | Viewed by 2887
Abstract
Mechanical recycling is the most efficient way to reduce plastic pollution due to its ability to maintain the intrinsic properties of plastics as well as provide economic benefits involved in other types of recycling. On the other hand, molecular dynamics (MD) simulations provide [...] Read more.
Mechanical recycling is the most efficient way to reduce plastic pollution due to its ability to maintain the intrinsic properties of plastics as well as provide economic benefits involved in other types of recycling. On the other hand, molecular dynamics (MD) simulations provide key insights into structural deformation, lamellar crystalline axis (c-axis) orientations, and reorganization, which are essential for understanding plastic behavior during structural deformations. To simulate the influence of structural deformations in high-density polyethylene (HDPE) during mechanical recycling while paying attention to obtaining an alternate lamellar orientation, the authors examine a specific way of preparing stacked lamella-oriented HDPE united atom (UA) models, starting from a single 1000 UA (C1000) chain of crystalline conformations and then packing such chain conformations into 2-chain, 10-chain, 15-chain, and 20-chain semi-crystalline models. The 2-chain, 10-chain, and 15-chain models yielded HDPE microstructures with the desired alternating lamellar orientations and entangled amorphous segments. On the other hand, the 20-chain model displayed multi-nucleus crystal growth instead of the lamellar-stack orientation. Structural characterization using a one-dimensional density profile and local order parameter {P2(r)} analyses demonstrated lamellar-stack orientation formation. All semi-crystalline models displayed the total density (ρ) and degree of crystallinity (χ) range of 0.90–0.94 g/cm−3 and ≥42–45%, respectively. A notable stress yield (σ_yield) ≈ 100–120 MPa and a superior elongation at break (ε_break) ~250% was observed under uniaxial strain deformation along the lamellar-stack orientation. Similarly, during the MD simulations, the microstructure phase change represented the average number of entanglements per chain (<Z>). From the present study, it can be recommended that the 10-chain alternate lamellar-stack orientation model is the most reliable miniature model for HDPE that can mimic industrially relevant plastic behavior in various conditions. Full article
(This article belongs to the Special Issue Advanced Recycling of Plastic Waste: An Approach for Circular Economy)
Show Figures

Figure 1

31 pages, 9982 KiB  
Article
Sb-Doped Cerium Molybdate: An Emerging Material as Dielectric and Photocatalyst for the Removal of Diclofenac Potassium from Aqueous Media
by Ayesha Javaid, Muhammad Imran, Farah Kanwal, Shoomaila Latif, Syed Farooq Adil, Mohammed Rafi Shaik and Mujeeb Khan
Molecules 2023, 28(24), 7979; https://doi.org/10.3390/molecules28247979 - 6 Dec 2023
Cited by 8 | Viewed by 2235
Abstract
This work reports the influence of antimony substitution in a cerium molybdate lattice for improved dielectric and photocatalytic properties. For this purpose, a series of Ce2−xSbx(MoO4)3 (x = 0.00, 0.01, 0.03, 0.05, 0.07, and 0.09) were [...] Read more.
This work reports the influence of antimony substitution in a cerium molybdate lattice for improved dielectric and photocatalytic properties. For this purpose, a series of Ce2−xSbx(MoO4)3 (x = 0.00, 0.01, 0.03, 0.05, 0.07, and 0.09) were synthesized through a co-precipitation route. The as-synthesized materials were characterized for their optical properties, functional groups, chemical oxidation states, structural phases, surface properties, and dielectric characteristics using UV–Vis spectroscopy (UV–Vis), Fourier transform infrared (FTIR) and Raman spectroscopies, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) analysis, and impedance spectroscopy, respectively. UV–Vis study showed a prominent red shift of absorption maxima and a continuous decrease in band gap (3.35 eV to 2.79 eV) by increasing the dopant concentration. The presence of Ce–O and Mo–O–Mo bonds, detected via FTIR and Raman spectroscopies, are confirmed, indicating the successful synthesis of the desired material. The monoclinic phase was dominant in all materials, and the crystallite size was decreased from 40.29 nm to 29.09 nm by increasing the Sb content. A significant increase in the dielectric constant (ε′ = 2.856 × 108, 20 Hz) and a decrease in the loss tan (tanδ = 1.647, 20 Hz) were exhibited as functions of the increasing Sb concentration. Furthermore, the photocatalytic efficiency of pristine cerium molybdate was also increased by 1.24 times against diclofenac potassium by incorporating Sb (x = 0.09) in the cerium molybdate. The photocatalytic efficiency of 85.8% was achieved within 180 min of UV light exposure at optimized conditions. The photocatalytic reaction followed pseudo-first-order kinetics with an apparent rate constant of 0.0105 min−1, and the photocatalyst was recyclable with good photocatalytic activity even after five successive runs. Overall, the as-synthesized Sb-doped cerium molybdate material has proven to be a promising candidate for charge storage devices and a sustainable photocatalyst for wastewater treatment. Full article
Show Figures

Figure 1

32 pages, 6836 KiB  
Review
Recent Progress in the Application of Palladium Nanoparticles: A Review
by Marwa Alaqarbeh, Syed Farooq Adil, Tamara Ghrear, Mujeeb Khan, Mohammed Bouachrine and Abdulrahman Al-Warthan
Catalysts 2023, 13(10), 1343; https://doi.org/10.3390/catal13101343 - 4 Oct 2023
Cited by 37 | Viewed by 6610
Abstract
Palladium (Pd), a noble metal, has unique properties for C-C bond formation in reactions such as the Suzuki and Heck reactions. Besides Pd-based complexes, Pd NPs have also attracted significant attention for applications such as fuel cells, hydrogen storage, and sensors for gases [...] Read more.
Palladium (Pd), a noble metal, has unique properties for C-C bond formation in reactions such as the Suzuki and Heck reactions. Besides Pd-based complexes, Pd NPs have also attracted significant attention for applications such as fuel cells, hydrogen storage, and sensors for gases such as H2 and non-enzymatic glucose, including catalysis. Additionally, Pd NPs are catalysts in environmental treatment to abstract organic and heavy-metal pollutants such as Cr (VI) by converting them to Cr(III). In terms of biological activity, Pd NPs were found to be active against Staphylococcus aureus and Escherichia coli, where 99.99% of bacteria were destroyed, while PVP-Pd NPs displayed anticancer activity against human breast cancer MCF7. Hence, in this review, we attempted to cover recent progress in the various applications of Pd NPs with emphasis on their application as sensors and catalysts for energy-related and other applications. Full article
Show Figures

Figure 1

16 pages, 3468 KiB  
Article
Morphology Controlled Deposition of Vanadium Oxide (VOx) Nanoparticles on the Surface of Highly Reduced Graphene Oxide for the Photocatalytic Degradation of Hazardous Organic Dyes
by Mohammed Rafi Shaik, Fatimah N. Aldhuwayhi, Amal Mohammed Al-Mohaimeed, Mohammad Rafe Hatshan, Mufsir Kuniyil, Syed Farooq Adil and Mujeeb Khan
Materials 2023, 16(18), 6340; https://doi.org/10.3390/ma16186340 - 21 Sep 2023
Cited by 5 | Viewed by 1863
Abstract
Semiconducting nanomaterials based heterogeneous photocatalysis represent a low-cost, versatile technique for environmental remediation, including pollution mitigation, energy management and other environmental aspects. Herein, we demonstrate the syntheses of various heterogeneous photocatalysts based on highly reduced graphene oxide (HRG) and vanadium oxide (VOx [...] Read more.
Semiconducting nanomaterials based heterogeneous photocatalysis represent a low-cost, versatile technique for environmental remediation, including pollution mitigation, energy management and other environmental aspects. Herein, we demonstrate the syntheses of various heterogeneous photocatalysts based on highly reduced graphene oxide (HRG) and vanadium oxide (VOx)-based nanocomposites (HRG–VOx). Different shapes (rod, sheet and urchin forms) of VOx nanoparticles were successfully fabricated on the surface of HRG under solvo-/hydrothermal conditions by varying the amount of water and ethanol. The high concentration of water in the mixture resulted in the formation of rod-shaped VOx nanoparticles, whereas increasing the amount of ethanol led to the production of VOx sheets. The solvothermal condition using pure ethanol as solvent produced VOx nano-urchins on the surface of HRG. The as-prepared hybrid materials were characterized using various spectroscopic and microscopic techniques, including X-ray diffraction, UV–vis, FTIR, SEM and TEM analyses. The photocatalytic activities of different HRG–VOx nanocomposites were investigated for the photodegradation of methylene blue (MB) and methyl orange (MO). The experimental data revealed that all HRG–VOx composite-based photocatalysts demonstrated excellent performance toward the photocatalytic degradation of the organic dyes. Among all photocatalysts studied, the HRG–VOx nanocomposite consisting of urchin-shaped VOx nanoparticles (HRG–VOx-U) demonstrated superior photocatalytic properties towards the degradation of dyes. Full article
Show Figures

Figure 1

21 pages, 5667 KiB  
Article
Effectiveness of Nonfunctionalized Graphene Oxide Nanolayers as Nanomedicine against Colon, Cervical, and Breast Cancer Cells
by Mohammad Rafe Hatshan, Quaiser Saquib, Maqsood A. Siddiqui, Mohammad Faisal, Javed Ahmad, Abdulaziz A. Al-Khedhairy, Mohammed Rafi Shaik, Mujeeb Khan, Rizwan Wahab, Valeria De Matteis and Syed Farooq Adil
Int. J. Mol. Sci. 2023, 24(11), 9141; https://doi.org/10.3390/ijms24119141 - 23 May 2023
Cited by 4 | Viewed by 2517
Abstract
Recent studies in nanomedicine have intensively explored the prospective applications of surface-tailored graphene oxide (GO) as anticancer entity. However, the efficacy of nonfunctionalized graphene oxide nanolayers (GRO-NLs) as an anticancer agent is less explored. In this study, we report the synthesis of GRO-NLs [...] Read more.
Recent studies in nanomedicine have intensively explored the prospective applications of surface-tailored graphene oxide (GO) as anticancer entity. However, the efficacy of nonfunctionalized graphene oxide nanolayers (GRO-NLs) as an anticancer agent is less explored. In this study, we report the synthesis of GRO-NLs and their in vitro anticancer potential in breast (MCF-7), colon (HT-29), and cervical (HeLa) cancer cells. GRO-NLs-treated HT-29, HeLa, and MCF-7 cells showed cytotoxicity in the MTT and NRU assays via defects in mitochondrial functions and lysosomal activity. HT-29, HeLa, and MCF-7 cells treated with GRO-NLs exhibited substantial elevations in ROS, disturbances of the mitochondrial membrane potential, an influx of Ca2+, and apoptosis. The qPCR quantification showed the upregulation of caspase 3, caspase 9, bax, and SOD1 genes in GRO-NLs-treated cells. Western blotting showed the depletion of P21, P53, and CDC25C proteins in the above cancer cell lines after GRO-NLs treatment, indicating its function as a mutagen to induce mutation in the P53 gene, thereby affecting P53 protein and downstream effectors P21 and CDC25C. In addition, there may be a mechanism other than P53 mutation that controls P53 dysfunction. We conclude that nonfunctionalized GRO-NLs exhibit prospective biomedical application as a putative anticancer entity against colon, cervical, and breast cancers. Full article
Show Figures

Figure 1

15 pages, 4338 KiB  
Article
Nano Nickel-Zirconia: An Effective Catalyst for the Production of Biodiesel from Waste Cooking Oil
by Mohammed Rafi Shaik, Mujeeb Khan, J. V. Shanmukha Kumar, Muhammad Ashraf, Majad Khan, Mufsir Kuniyil, Mohamed E. Assal, Abdulrahman Al-Warthan, Mohammed Rafiq H. Siddiqui, Aslam Khan, Muhammad Nawaz Tahir and Syed Farooq Adil
Crystals 2023, 13(4), 592; https://doi.org/10.3390/cryst13040592 - 31 Mar 2023
Cited by 4 | Viewed by 2808
Abstract
The utilization of heterogeneous catalysts during the production of biodiesel potentially minimize the cost of processing due to the exclusion of the separation step. The (X wt%)Ni–ZrO2 (where X = 10, 25 and 50) catalysts prepared through a hydrothermal process were tested [...] Read more.
The utilization of heterogeneous catalysts during the production of biodiesel potentially minimize the cost of processing due to the exclusion of the separation step. The (X wt%)Ni–ZrO2 (where X = 10, 25 and 50) catalysts prepared through a hydrothermal process were tested for the production of biodiesel by the transesterification of waste cooking oil (WCO) with methanol. The influences of various reaction parameters were systematically optimized. While the physicochemical characteristics of the as-synthesized catalysts were examined using numerous techniques such as FTIR, XRD, TGA BET, EDX, SEM, and HRTEM. Among all the catalysts, (10 wt%)Ni–ZrO2 exhibited high surface area when compared to the pristine ZrO2, (25 wt%)Ni–ZrO2 and (50 wt%)Ni–ZrO2 nanocatalysts. It may have influenced the catalytic properties of (10 wt%)Ni–ZrO2, which exhibited maximum catalytic activity with a biodiesel production yield of 90.5% under optimal conditions. Such as 15:1 methanol to oil molar ratio, 10 wt% catalysts to oil ratio, 8 h reaction time and 180 °C reaction temperature. Furthermore, the recovered catalyst was efficiently reused in several repeated experiments, demonstrating marginal loss in its activity after multiple cycles (five times). Full article
Show Figures

Figure 1

Back to TopTop