Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = Srayoshi Roy Chowdhury

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3309 KiB  
Article
Stimuli-Responsive Designer Supramolecular Polymer Gel
by M. Douzapau, Srayoshi Roy Chowdhury, Surajit Singh, Olamilekan Joseph Ibukun and Debasish Haldar
Chemistry 2023, 5(1), 691-702; https://doi.org/10.3390/chemistry5010048 - 22 Mar 2023
Cited by 3 | Viewed by 3011
Abstract
This paper reports a stimuli-responsive designer supramolecular polymer gel in dimethylsulphoxide (DMSO)/water (1:2) based on a dipeptide amphiphile and β-cyclodextrin (β-CD) The dipeptide amphiphile contains caproic acid at the N terminus and methyl ester at the C terminus. From X-ray single crystal diffraction, [...] Read more.
This paper reports a stimuli-responsive designer supramolecular polymer gel in dimethylsulphoxide (DMSO)/water (1:2) based on a dipeptide amphiphile and β-cyclodextrin (β-CD) The dipeptide amphiphile contains caproic acid at the N terminus and methyl ester at the C terminus. From X-ray single crystal diffraction, the amphiphile adopts a kink-like conformation. The amphiphile self-assembled to form a parallel sheet-like structure stabilized by multiple intermolecular hydrogen bonds. Moreover, the parallel sheet-like structure is also stabilized by edge-to-edge ππ stacking interactions. In higher-order packing, it forms a corrugated sheet-like structure stabilized by hydrophobic interactions. The dipeptide amphiphile interacts with β-cyclodextrin and forms gel through supramolecular polymer formation in (DMSO)/water (1:2) by a simple heating-cooling cycle. The sol-to-gel transformation is because of a host–guest complex between compound 1 and β-CD and the formation of supramolecular polymer accompanied by microstructure changes from nanofibers to microrods. The gel is temperature responsive with a Tgel of 70 °C. The supramolecular polymer gel is also responsive to stimuli such aspicric acid and HCl. The extensive spectroscopic studies show that the aromatic hydrophobic side chain of compound 1 forms a host–guest complex with β-CD. These results will be helpful for the design of advanced programable eco-friendly functional materials. Full article
(This article belongs to the Special Issue Programmable and Stimulus-Responsive Supramolecular Assemblies)
Show Figures

Figure 1

13 pages, 4126 KiB  
Article
White-Light-Emitting Supramolecular Polymer Gel Based on β-CD and NDI Host-Guest Inclusion Complex
by Srayoshi Roy Chowdhury, Sujay Kumar Nandi, Sahabaj Mondal, Santosh Kumar and Debasish Haldar
Polymers 2021, 13(16), 2762; https://doi.org/10.3390/polym13162762 - 17 Aug 2021
Cited by 6 | Viewed by 3250
Abstract
Supramolecular polymer formed by non-covalent interactions between complementary building blocks entraps solvents and develops supramolecular polymer gel. A supramolecular polymer gel was prepared by the heating-cooling cycle of β-cyclodextrin (β-CD) and naphthalenedimide (NDI) solution in N,N-dimethylformamide (DMF). The host-guest inclusion [...] Read more.
Supramolecular polymer formed by non-covalent interactions between complementary building blocks entraps solvents and develops supramolecular polymer gel. A supramolecular polymer gel was prepared by the heating-cooling cycle of β-cyclodextrin (β-CD) and naphthalenedimide (NDI) solution in N,N-dimethylformamide (DMF). The host-guest inclusion complex of β-CD and NDI 1 containing dodecyl amine forms the supramolecular polymer and gel in DMF. However, β-CD and NDI 2, having glutamic acid, fail to form the supramolecular polymer and gel under the same condition. X-ray crystallography shows that the alkyl chains of NDI 1 are complementary to the hydrophobic cavity of the two β-CD units. From rheology, the storage modulus was approximately 1.5 orders of magnitude larger than the loss modulus, which indicates the physical crosslink and elastic nature of the thermo-responsive gel. FE-SEM images of the supramolecular polymer gel exhibit flake-like morphology and a dense flake network. The flakes developed from the assembly of smaller rods. Photophysical studies show that the host-guest complex formation and gelation have significantly enhanced emission intensity with a new hump at 550 nm. Upon excitation by a 366 nm UV-light, NDI 1 and β-CD gel in DMF shows white light emission. The gel has the potential for the fabrication of organic electronic devices. Full article
(This article belongs to the Special Issue Advances in Supramolecular Polymer Gels)
Show Figures

Graphical abstract

Back to TopTop