Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Authors = Soshu Kirihara ORCID = 0000-0003-3209-6265

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1972 KiB  
Article
Top-Down Stereolithography-Based System for Additive Manufacturing of Zirconia for Dental Applications
by Kumiko Yoshihara, Noriyuki Nagaoka, Fiona Spirrett, Yukinori Maruo, Yasuhiro Yoshida, Bart Van Meerbeek and Soshu Kirihara
Appl. Sci. 2025, 15(11), 6155; https://doi.org/10.3390/app15116155 - 30 May 2025
Viewed by 531
Abstract
This study investigated the feasibility and effectiveness of a commercial top-down stereolithography (SLA)-based system for the additive manufacturing of zirconia dental prostheses. Yttria-stabilized zirconia–resin slurries were prepared, and zirconia objects were fabricated using a top-down SLA system. Thermogravimetric–differential thermal analysis was used to [...] Read more.
This study investigated the feasibility and effectiveness of a commercial top-down stereolithography (SLA)-based system for the additive manufacturing of zirconia dental prostheses. Yttria-stabilized zirconia–resin slurries were prepared, and zirconia objects were fabricated using a top-down SLA system. Thermogravimetric–differential thermal analysis was used to examine the resin, while X-ray fluorescence spectroscopy and X-ray diffraction were used to analyze the printed samples. The microstructures of additively manufactured and subtractively manufactured zirconia were compared using field emission scanning electron microscopy (FE-SEM) before and after sintering. Biaxial flexural strength tests were also conducted to evaluate mechanical properties. The green bodies obtained via additive manufacturing exhibited uniform layering with strong interlayer adhesion. After sintering, the structures were dense with minimal porosity. However, compared to subtractively manufactured zirconia, the additively manufactured specimens showed slightly higher porosity and lower biaxial flexural strength. The results demonstrate the potential of SLA-based additive manufacturing for dental zirconia applications while also highlighting its current mechanical limitations. The study also showed that using a blade to evenly spread viscous slurry layers in a top-down SLA system can effectively reduce oxygen inhibition at the surface and relieve internal stresses during the layer-by-layer printing process, offering a promising direction for clinical adaptation. Full article
(This article belongs to the Special Issue The Applications of Laser-Based Manufacturing for Material Science)
Show Figures

Figure 1

9 pages, 3101 KiB  
Article
Ceramic Stereolithography of Li7La3Zr2O12 Micro-Embossed Sheets for Solid Electrolyte Applications
by Fiona Spirrett, Ayaka Oi and Soshu Kirihara
Ceramics 2024, 7(3), 1218-1226; https://doi.org/10.3390/ceramics7030080 - 12 Sep 2024
Cited by 1 | Viewed by 1299
Abstract
Lithium-ion batteries (LIBs) have significantly advanced portable electronics, yet their reliance on flammable organic solvents and lithium dendrite formation pose safety risks. Solid-state batteries (SSBs), utilizing solid electrolytes, offer a safer alternative with higher energy and power densities. This study explores the fabrication [...] Read more.
Lithium-ion batteries (LIBs) have significantly advanced portable electronics, yet their reliance on flammable organic solvents and lithium dendrite formation pose safety risks. Solid-state batteries (SSBs), utilizing solid electrolytes, offer a safer alternative with higher energy and power densities. This study explores the fabrication of solid electrolytes using ceramic stereolithography, focusing on lithium lanthanum zirconate (LLZ) due to its high ionic conductivity and chemical stability. A photosensitive paste containing 40–43 vol% LLZ was suitable for processing by stereolithography, and optimized processing parameters of 100 mW laser power and 1000 mm/s laser scanning speed with a 50 μm laser spot size were identified for sufficient material curing and interlayer lamination of LLZ. Thin embossed sheets were designed to enhance ion exchange and reduce internal resistance and were fabricated by the ceramic stereolithography method. The effect of cold isostatic pressing (CIP) on the sintered microstructure was investigated, and the potential for CIP to promote solid-phase diffusion during sintering was demonstrated, particularly at 67 MPa. The resulting LLZ-embossed sheets exhibited dense ceramic microstructures. These findings support the potential application of ceramic stereolithography for fabricating efficient solid electrolytes for next-generation telecommunications and mobile devices. Full article
(This article belongs to the Special Issue Advances in Ceramics, 2nd Edition)
Show Figures

Figure 1

7 pages, 1414 KiB  
Article
Reduction of Dewaxing and Sintering Time by Controlling the Particle Size of YSZ Particles for Stereolithography
by Masaya Takahashi, Fiona Spirrett and Soshu Kirihara
Ceramics 2022, 5(4), 814-820; https://doi.org/10.3390/ceramics5040059 - 18 Oct 2022
Cited by 2 | Viewed by 2388
Abstract
In ceramic stereolithography, composite “green” bodies must be thermally processed to de-bind organic content and sinter the material. The conventional process for dewaxing and sintering of yttria stabilized zirconia stereolithography components is typically very long. The time and energy cost of thermal treatment [...] Read more.
In ceramic stereolithography, composite “green” bodies must be thermally processed to de-bind organic content and sinter the material. The conventional process for dewaxing and sintering of yttria stabilized zirconia stereolithography components is typically very long. The time and energy cost of thermal treatment of these components can be reduced by controlling the size of the solid particles in the photosensitive material. The Discrete Element Method was used to model the number of particle contacts per mass using particles of various median diameter, and a three-dimensional curved surface graph was generated. Ceramic slurries were prepared using powders that fulfilled the conditions of various calculated data points from the DEM model analysis. The prepared slurries were processed by stereolithography additive manufacturing and fabricated precursors were thermally processed to dewax and sinter the parts. The relationship between the particle size and the occurrence of crack formation after heat treatment was investigated. Heat treatment parameters were further investigated using the predicted slurry composition that was optimal for crack prevention. The required time for dewaxing and sintering of yttria stabilized zirconia components was reduced to one tenth of the conventional time through optimization of slurry composition and thermal treatment schedule. Full article
Show Figures

Figure 1

11 pages, 3147 KiB  
Article
High-Speed Alumina Stereolithography
by Fiona Spirrett, Tatsuya Ito and Soshu Kirihara
Appl. Sci. 2022, 12(19), 9760; https://doi.org/10.3390/app12199760 - 28 Sep 2022
Cited by 4 | Viewed by 1974
Abstract
The additive manufacturing of ceramics offers a reliable and repeatable method for fabricating parts with complex geometries. To compete with conventional ceramic forming methods, the time and cost associated with material and process optimization for ceramic stereolithography should be improved. Computational analysis methods [...] Read more.
The additive manufacturing of ceramics offers a reliable and repeatable method for fabricating parts with complex geometries. To compete with conventional ceramic forming methods, the time and cost associated with material and process optimization for ceramic stereolithography should be improved. Computational analysis methods can be utilized to reduce the number of experimental steps required for material and process optimization. This work used the discrete element method and ray tracing analyses to predict suitable material parameters and processing conditions for ceramic stereolithography. The discrete element method was used to create alumina particle dispersion models to predict suitable paste compositions, and ray tracing was used to predict suitable laser power and scan speed to achieve a sufficient curing depth for stereolithography processing. The predicted conditions of paste composition and processing parameters were comparable to experimental values, reducing the number of experimental iterations required for process optimization. Furthermore, suitable processing parameters for high-speed fabrication by stereolithography was predicted, achieving a processing speed much faster than previously reported ceramic stereolithography. The reduction in process optimization timeline, and the increase in fabrication speed, could increase the appeal of ceramic stereolithography to industry. Full article
(This article belongs to the Special Issue Multidimensional Additive Manufacturing)
Show Figures

Figure 1

12 pages, 4653 KiB  
Review
Systematic Compounding of Ceramic Pastes in Stereolithographic Additive Manufacturing
by Soshu Kirihara
Materials 2021, 14(22), 7090; https://doi.org/10.3390/ma14227090 - 22 Nov 2021
Cited by 7 | Viewed by 3200
Abstract
In this paper, stereolithographic additive manufacturing of ceramic dental crowns is discussed and reviewed. The accuracy of parts in ceramic processing were optimized through smart computer-aided design, manufacturing, and evaluation. Then, viscous acrylic resin, including alumina particles, were successfully compounded. The closed packing [...] Read more.
In this paper, stereolithographic additive manufacturing of ceramic dental crowns is discussed and reviewed. The accuracy of parts in ceramic processing were optimized through smart computer-aided design, manufacturing, and evaluation. Then, viscous acrylic resin, including alumina particles, were successfully compounded. The closed packing of alumina particles in acrylic pastes was virtually simulated using the distinct element method. Multimodal distributions of particle diameters were systematically optimized at an 80% volume fraction, and an ultraviolet laser beam was scanned sterically. Fine spots were continuously joined by photochemical polymerization. The optical intensity distributions from focal spots were spatially simulated using the ray tracing method. Consequently, the lithographic conditions of the curing depths and dimensional tolerances were experimentally measured and effectively improved, where solid objects were freely processed by layer stacking and interlayer bonding. The composite precursors were dewaxed and sintered along effective heat treatment patterns. The results show that linear shrinkages were reduced as the particle volume fractions were increased. Anisotropic deformations in the horizontal and vertical directions were recursively resolved along numerical feedback for graphical design. Accordingly, dense microstructures without microcracks or pores were obtained. The mechanical properties were measured as practical levels for dental applications. Full article
Show Figures

Figure 1

10 pages, 3985 KiB  
Article
Stereolithographic Additive Manufacturing of Zirconia Electrodes with Dendritic Patterns for Aluminum Smelting
by Masaya Takahashi and Soshu Kirihara
Appl. Sci. 2021, 11(17), 8168; https://doi.org/10.3390/app11178168 - 3 Sep 2021
Cited by 5 | Viewed by 2171
Abstract
Zirconia electrodes with dendritic patterns were fabricated by stereolithographic additive manufacturing (STL-AM). A solid electrolyte of yttria-stabilized zirconia (YSZ) was selected for oxygen separation in the molten salt electrolysis of aluminum smelting without carbon dioxide excretion. Thereafter, 4, 6, 8 and 12-coordinated dendritic [...] Read more.
Zirconia electrodes with dendritic patterns were fabricated by stereolithographic additive manufacturing (STL-AM). A solid electrolyte of yttria-stabilized zirconia (YSZ) was selected for oxygen separation in the molten salt electrolysis of aluminum smelting without carbon dioxide excretion. Thereafter, 4, 6, 8 and 12-coordinated dendritic structures composed of cylindrical lattices were designed as computer graphics. The specific surface area of each structure was maximized by changing the aspect ratio. The spatial profile and surface pressure of the hot liquid propagation in the dendrite patterns were systematically visualized by computational fluid dynamics (CFD). During the fabrication process, a photosensitive resin containing zirconia particles was spread on a substrate, and an ultraviolet (UV) laser beam was scanned to create a two-dimensional (2D) cross-section. Through layer laminations, three-dimensional (3D) objects with dendritic structures were successfully fabricated. The ceramics were obtained through dewaxing and sintering. Full article
(This article belongs to the Special Issue Smart Additive Manufacturing, Design and Evaluation)
Show Figures

Figure 1

10 pages, 2698 KiB  
Article
Ultraviolet Laser Lithography of Titania Photonic Crystals for Terahertz-Wave Modulation
by Soshu Kirihara, Koki Nonaka, Shoichiro Kisanuki, Hirotoshi Nozaki and Keito Sakaguchi
Materials 2018, 11(5), 835; https://doi.org/10.3390/ma11050835 - 18 May 2018
Cited by 12 | Viewed by 3650
Abstract
Three-dimensional (3D) microphotonic crystals with a diamond structure composed of titania microlattices were fabricated using ultraviolet laser lithography, and the bandgap properties in the terahertz (THz) electromagnetic-wave frequency region were investigated. An acrylic resin paste with titania fine particle dispersions was used as [...] Read more.
Three-dimensional (3D) microphotonic crystals with a diamond structure composed of titania microlattices were fabricated using ultraviolet laser lithography, and the bandgap properties in the terahertz (THz) electromagnetic-wave frequency region were investigated. An acrylic resin paste with titania fine particle dispersions was used as the raw material for additive manufacturing. By scanning a spread paste surface with an ultraviolet laser beam, two-dimensional solid patterns were dewaxed and sintered. Subsequently, 3D structures with a relative density of 97% were created via layer lamination and joining. A titania diamond lattice with a lattice constant density of 240 µm was obtained. The properties of the electromagnetic wave were measured using a THz time-domain spectrometer. In the transmission spectra for the Γ-X <100> direction, a forbidden band was observed from 0.26 THz to 0.44 THz. The frequency range of the bandgap agreed well with calculated results obtained using the plane–wave expansion method. Additionally, results of a simulation via transmission-line modeling indicated that a localized mode can be obtained by introducing a plane defect between twinned diamond lattice structures. Full article
(This article belongs to the Special Issue Photonic Crystals for Chemical Sensing and Biosensing)
Show Figures

Figure 1

8 pages, 1395 KiB  
Article
Freeform Fabrication of Magnetophotonic Crystals with Diamond Lattices of Oxide and Metallic Glasses for Terahertz Wave Control by Micro Patterning Stereolithography and Low Temperature Sintering
by Soshu Kirihara and Maasa Nakano
Micromachines 2013, 4(2), 149-156; https://doi.org/10.3390/mi4020149 - 2 Apr 2013
Cited by 4 | Viewed by 7161
Abstract
Micrometer order magnetophotonic crystals with periodic arranged metallic glass and oxide glass composite materials were fabricated by stereolithographic method to reflect electromagnetic waves in terahertz frequency ranges through Bragg diffraction. In the fabrication process, the photo sensitive acrylic resin paste mixed with micrometer [...] Read more.
Micrometer order magnetophotonic crystals with periodic arranged metallic glass and oxide glass composite materials were fabricated by stereolithographic method to reflect electromagnetic waves in terahertz frequency ranges through Bragg diffraction. In the fabrication process, the photo sensitive acrylic resin paste mixed with micrometer sized metallic glass of Fe72B14.4Si9.6Nb4 and oxide glass of B2O3·Bi2O3 particles was spread on a metal substrate, and cross sectional images of ultra violet ray were exposed. Through the layer by layer stacking, micro lattice structures with a diamond type periodic arrangement were successfully formed. The composite structures could be obtained through the dewaxing and sintering process with the lower temperature under the transition point of metallic glass. Transmission spectra of the terahertz waves through the magnetophotonic crystals were measured by using a terahertz time domain spectroscopy. Full article
(This article belongs to the Special Issue Glass Micromachining and Applications of Glass)
Show Figures

Figure 1

Back to TopTop