Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Authors = Smita Khade

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5202 KiB  
Article
Iris Liveness Detection Using Multiple Deep Convolution Networks
by Smita Khade, Shilpa Gite and Biswajeet Pradhan
Big Data Cogn. Comput. 2022, 6(2), 67; https://doi.org/10.3390/bdcc6020067 - 15 Jun 2022
Cited by 17 | Viewed by 5123
Abstract
In the recent decade, comprehensive research has been carried out in terms of promising biometrics modalities regarding humans’ physical features for person recognition. This work focuses on iris characteristics and traits for person identification and iris liveness detection. This study used five pre-trained [...] Read more.
In the recent decade, comprehensive research has been carried out in terms of promising biometrics modalities regarding humans’ physical features for person recognition. This work focuses on iris characteristics and traits for person identification and iris liveness detection. This study used five pre-trained networks, including VGG-16, Inceptionv3, Resnet50, Densenet121, and EfficientNetB7, to recognize iris liveness using transfer learning techniques. These models are compared using three state-of-the-art biometric databases: the LivDet-Iris 2015 dataset, IIITD contact dataset, and ND Iris3D 2020 dataset. Validation accuracy, loss, precision, recall, and f1-score, APCER (attack presentation classification error rate), NPCER (normal presentation classification error rate), and ACER (average classification error rate) were used to evaluate the performance of all pre-trained models. According to the observational data, these models have a considerable ability to transfer their experience to the field of iris recognition and to recognize the nanostructures within the iris region. Using the ND Iris 3D 2020 dataset, the EfficeintNetB7 model has achieved 99.97% identification accuracy. Experiments show that pre-trained models outperform other current iris biometrics variants. Full article
(This article belongs to the Special Issue Data, Structure, and Information in Artificial Intelligence)
Show Figures

Figure 1

23 pages, 4378 KiB  
Article
Detection of Iris Presentation Attacks Using Feature Fusion of Thepade’s Sorted Block Truncation Coding with Gray-Level Co-Occurrence Matrix Features
by Smita Khade, Shilpa Gite, Sudeep D. Thepade, Biswajeet Pradhan and Abdullah Alamri
Sensors 2021, 21(21), 7408; https://doi.org/10.3390/s21217408 - 8 Nov 2021
Cited by 15 | Viewed by 3877
Abstract
Iris biometric detection provides contactless authentication, preventing the spread of COVID-19-like contagious diseases. However, these systems are prone to spoofing attacks attempted with the help of contact lenses, replayed video, and print attacks, making them vulnerable and unsafe. This paper proposes the iris [...] Read more.
Iris biometric detection provides contactless authentication, preventing the spread of COVID-19-like contagious diseases. However, these systems are prone to spoofing attacks attempted with the help of contact lenses, replayed video, and print attacks, making them vulnerable and unsafe. This paper proposes the iris liveness detection (ILD) method to mitigate spoofing attacks, taking global-level features of Thepade’s sorted block truncation coding (TSBTC) and local-level features of the gray-level co-occurrence matrix (GLCM) of the iris image. Thepade’s SBTC extracts global color texture content as features, and GLCM extracts local fine-texture details. The fusion of global and local content presentation may help distinguish between live and non-live iris samples. The fusion of Thepade’s SBTC with GLCM features is considered in experimental validations of the proposed method. The features are used to train nine assorted machine learning classifiers, including naïve Bayes (NB), decision tree (J48), support vector machine (SVM), random forest (RF), multilayer perceptron (MLP), and ensembles (SVM + RF + NB, SVM + RF + RT, RF + SVM + MLP, J48 + RF + MLP) for ILD. Accuracy, precision, recall, and F-measure are used to evaluate the performance of the projected ILD variants. The experimentation was carried out on four standard benchmark datasets, and our proposed model showed improved results with the feature fusion approach. The proposed fusion approach gave 99.68% accuracy using the RF + J48 + MLP ensemble of classifiers, immediately followed by the RF algorithm, which gave 95.57%. The better capability of iris liveness detection will improve human–computer interaction and security in the cyber-physical space by improving person validation. Full article
Show Figures

Graphical abstract

54 pages, 10378 KiB  
Review
Iris Liveness Detection for Biometric Authentication: A Systematic Literature Review and Future Directions
by Smita Khade, Swati Ahirrao, Shraddha Phansalkar, Ketan Kotecha, Shilpa Gite and Sudeep D. Thepade
Inventions 2021, 6(4), 65; https://doi.org/10.3390/inventions6040065 - 6 Oct 2021
Cited by 25 | Viewed by 8484
Abstract
Biometrics is progressively becoming vital due to vulnerabilities of traditional security systems leading to frequent security breaches. Biometrics is an automated device that studies human beings’ physiological and behavioral features for their unique classification. Iris-based authentication offers stronger, unique, and contactless identification of [...] Read more.
Biometrics is progressively becoming vital due to vulnerabilities of traditional security systems leading to frequent security breaches. Biometrics is an automated device that studies human beings’ physiological and behavioral features for their unique classification. Iris-based authentication offers stronger, unique, and contactless identification of the user. Iris liveness detection (ILD) confronts challenges such as spoofing attacks with contact lenses, replayed video, and print attacks, etc. Many researchers focus on ILD to guard the biometric system from attack. Hence, it is vital to study the prevailing research explicitly associated with the ILD to address how developing technologies can offer resolutions to lessen the evolving threats. An exhaustive survey of papers on the biometric ILD was performed by searching the most applicable digital libraries. Papers were filtered based on the predefined inclusion and exclusion criteria. Thematic analysis was performed for scrutinizing the data extracted from the selected papers. The exhaustive review now outlines the different feature extraction techniques, classifiers, datasets and presents their critical evaluation. Importantly, the study also discusses the projects, research works for detecting the iris spoofing attacks. The work then realizes in the discovery of the research gaps and challenges in the field of ILD. Many works were restricted to handcrafted methods of feature extraction, which are confronted with bigger feature sizes. The study discloses that dep learning based automated ILD techniques shows higher potential than machine learning techniques. Acquiring an ILD dataset that addresses all the common Iris spoofing attacks is also a need of the time. The survey, thus, opens practical challenges in the field of ILD from data collection to liveness detection and encourage future research. Full article
(This article belongs to the Collection Feature Innovation Papers)
Show Figures

Figure 1

Back to TopTop