Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Authors = Sivasubramani Divya

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 8586 KiB  
Review
Unraveling the Dynamic Properties of New-Age Energy Materials Chemistry Using Advanced In Situ Transmission Electron Microscopy
by Subramaniyan Ramasundaram, Sampathkumar Jeevanandham, Natarajan Vijay, Sivasubramani Divya, Peter Jerome and Tae Hwan Oh
Molecules 2024, 29(18), 4411; https://doi.org/10.3390/molecules29184411 - 17 Sep 2024
Cited by 1 | Viewed by 5628
Abstract
The field of energy storage and conversion materials has witnessed transformative advancements owing to the integration of advanced in situ characterization techniques. Among them, numerous real-time characterization techniques, especially in situ transmission electron microscopy (TEM)/scanning TEM (STEM) have tremendously increased the atomic-level understanding [...] Read more.
The field of energy storage and conversion materials has witnessed transformative advancements owing to the integration of advanced in situ characterization techniques. Among them, numerous real-time characterization techniques, especially in situ transmission electron microscopy (TEM)/scanning TEM (STEM) have tremendously increased the atomic-level understanding of the minute transition states in energy materials during electrochemical processes. Advanced forms of in situ/operando TEM and STEM microscopic techniques also provide incredible insights into material phenomena at the finest scale and aid to monitor phase transformations and degradation mechanisms in lithium-ion batteries. Notably, the solid–electrolyte interface (SEI) is one the most significant factors that associated with the performance of rechargeable batteries. The SEI critically controls the electrochemical reactions occur at the electrode–electrolyte interface. Intricate chemical reactions in energy materials interfaces can be effectively monitored using temperature-sensitive in situ STEM techniques, deciphering the reaction mechanisms prevailing in the degradation pathways of energy materials with nano- to micrometer-scale spatial resolution. Further, the advent of cryogenic (Cryo)-TEM has enhanced these studies by preserving the native state of sensitive materials. Cryo-TEM also allows the observation of metastable phases and reaction intermediates that are otherwise challenging to capture. Along with these sophisticated techniques, Focused ion beam (FIB) induction has also been instrumental in preparing site-specific cross-sectional samples, facilitating the high-resolution analysis of interfaces and layers within energy devices. The holistic integration of these advanced characterization techniques provides a comprehensive understanding of the dynamic changes in energy materials. This review highlights the recent progress in employing state-of-the-art characterization techniques such as in situ TEM, STEM, Cryo-TEM, and FIB for detailed investigation into the structural and chemical dynamics of energy storage and conversion materials. Full article
Show Figures

Figure 1

34 pages, 9881 KiB  
Review
Hierarchically Porous Vanadium-Based Cathode Materials for High-Performance Na-Ion Batteries
by Kanakaraj Aruchamy, Subramaniyan Ramasundaram, Athinarayanan Balasankar, Sivasubramani Divya, Ling Fei and Tae Hwan Oh
Batteries 2024, 10(7), 223; https://doi.org/10.3390/batteries10070223 - 24 Jun 2024
Cited by 5 | Viewed by 3260
Abstract
Sodium-ion batteries (SIBs) have emerged as a promising alternative to lithium-ion batteries (LIBs) in sectors requiring extensive energy storage. The abundant availability of sodium at a low cost addresses concerns associated with lithium, such as environmental contamination and limited availability. However, SIBs exhibit [...] Read more.
Sodium-ion batteries (SIBs) have emerged as a promising alternative to lithium-ion batteries (LIBs) in sectors requiring extensive energy storage. The abundant availability of sodium at a low cost addresses concerns associated with lithium, such as environmental contamination and limited availability. However, SIBs exhibit lower energy density and cyclic stability compared to LIBs. One of the key challenges in improving the performance of SIBs lies in the electrochemical properties of the cathode materials. Among the various cathodes utilized in SIBs, sodium vanadium phosphates (NVPs) and sodium vanadium fluorophosphates (NVPFs) are particularly advantageous. These vanadium-based cathodes offer high theoretical capacity and are cost-effective. Commercialization of SIBs with NVPF cathodes has already begun. However, the poor conductivity of these cathode materials leads to a short cycle life and inferior rate performance. Various synthesis methods have been explored to enhance the conductivity, including heteroatom doping (N, S, and Co), surface modification, the fabrication of porous nanostructures, and composite formation with conductive carbon materials. In particular, cathodes with interconnected hierarchical micro- and nano-porous morphologies have shown promise. This review focuses on the diverse synthesis methods reported for preparing hierarchically porous cathodes. With increased attention, particular emphasis has been placed on carbon composites of NVPs and NVPFs. Additionally, the synthesis of vanadium pentoxide-based cathodes is also discussed. Full article
(This article belongs to the Special Issue High-Performance Materials for Sodium-Ion Batteries)
Show Figures

Figure 1

38 pages, 11551 KiB  
Review
Gel Polymer Electrolytes: Advancing Solid-State Batteries for High-Performance Applications
by Kanakaraj Aruchamy, Subramaniyan Ramasundaram, Sivasubramani Divya, Murugesan Chandran, Kyusik Yun and Tae Hwan Oh
Gels 2023, 9(7), 585; https://doi.org/10.3390/gels9070585 - 21 Jul 2023
Cited by 60 | Viewed by 19732
Abstract
Gel polymer electrolytes (GPEs) hold tremendous potential for advancing high-energy-density and safe rechargeable solid-state batteries, making them a transformative technology for advancing electric vehicles. GPEs offer high ionic conductivity and mechanical stability, enabling their use in quasi-solid-state batteries that combine solid-state interfaces with [...] Read more.
Gel polymer electrolytes (GPEs) hold tremendous potential for advancing high-energy-density and safe rechargeable solid-state batteries, making them a transformative technology for advancing electric vehicles. GPEs offer high ionic conductivity and mechanical stability, enabling their use in quasi-solid-state batteries that combine solid-state interfaces with liquid-like behavior. Various GPEs based on different materials, including flame-retardant GPEs, dendrite-free polymer gel electrolytes, hybrid solid-state batteries, and 3D printable GPEs, have been developed. Significant efforts have also been directed toward improving the interface between GPEs and electrodes. The integration of gel-based electrolytes into solid-state electrochemical devices has the potential to revolutionize energy storage solutions by offering improved efficiency and reliability. These advancements find applications across diverse industries, particularly in electric vehicles and renewable energy. This review comprehensively discusses the potential of GPEs as solid-state electrolytes for diverse battery systems, such as lithium-ion batteries (LiBs), lithium metal batteries (LMBs), lithium–oxygen batteries, lithium–sulfur batteries, zinc-based batteries, sodium–ion batteries, and dual-ion batteries. This review highlights the materials being explored for GPE development, including polymers, inorganic compounds, and ionic liquids. Furthermore, it underscores the transformative impact of GPEs on solid-state batteries and their role in enhancing the performance and safety of energy storage devices. Full article
(This article belongs to the Special Issue Gel-Based Electrolytes for Solid-State Electrochemical Devices)
Show Figures

Figure 1

22 pages, 5976 KiB  
Review
Polymer Nanocomposite Membrane for Wastewater Treatment: A Critical Review
by Sivasubramani Divya and Tae Hwan Oh
Polymers 2022, 14(9), 1732; https://doi.org/10.3390/polym14091732 - 24 Apr 2022
Cited by 30 | Viewed by 7201
Abstract
With regard to global concerns, such as water scarcity and aquatic pollution from industries and domestic activities, membrane-based filtration for wastewater treatment has shown promising results in terms of water purification. Filtration by polymeric membranes is highly efficient in separating contaminants; however, such [...] Read more.
With regard to global concerns, such as water scarcity and aquatic pollution from industries and domestic activities, membrane-based filtration for wastewater treatment has shown promising results in terms of water purification. Filtration by polymeric membranes is highly efficient in separating contaminants; however, such membranes have limited applications. Nanocomposite membranes, which are formed by adding nanofillers to polymeric membrane matrices, can enhance the filtration process. Considerable attention has been given to nanofillers, which include carbon-based nanoparticles and metal/metal oxide nanoparticles. In this review, we first examined the current status of membrane technologies for water filtration, polymeric nanocomposite membranes, and their applications. Additionally, we highlight the challenges faced in water treatment in developing countries. Full article
(This article belongs to the Special Issue Novel Polymeric Blend/Composites and Functional Membranes)
Show Figures

Figure 1

Back to TopTop