Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Authors = Shew-Fung Wong

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4881 KiB  
Article
The Effects of Meteorological Factors on Dengue Cases in Malaysia
by Sarbhan Singh, Lai Chee Herng, Lokman Hakim Sulaiman, Shew Fung Wong, Jenarun Jelip, Norhayati Mokhtar, Quillon Harpham, Gina Tsarouchi and Balvinder Singh Gill
Int. J. Environ. Res. Public Health 2022, 19(11), 6449; https://doi.org/10.3390/ijerph19116449 - 26 May 2022
Cited by 12 | Viewed by 4005
Abstract
Dengue is a vector-borne disease affected by meteorological factors and is commonly recorded from ground stations. Data from ground station have limited spatial representation and accuracy, which can be overcome using satellite-based Earth Observation (EO) recordings instead. EO-based meteorological recordings can help to [...] Read more.
Dengue is a vector-borne disease affected by meteorological factors and is commonly recorded from ground stations. Data from ground station have limited spatial representation and accuracy, which can be overcome using satellite-based Earth Observation (EO) recordings instead. EO-based meteorological recordings can help to provide a better understanding of the correlations between meteorological variables and dengue cases. This paper aimed to first validate the satellite-based (EO) data of temperature, wind speed, and rainfall using ground station data. Subsequently, we aimed to determine if the spatially matched EO data correlated with dengue fever cases from 2011 to 2019 in Malaysia. EO data were spatially matched with the data from four ground stations located at states and districts in the central (Selangor, Petaling) and east coast (Kelantan, Kota Baharu) geographical regions of Peninsular Malaysia. Spearman’s rank-order correlation coefficient (ρ) was performed to examine the correlation between EO and ground station data. A cross-correlation analysis with an eight-week lag period was performed to examine the magnitude of correlation between EO data and dengue case across the three time periods (2011–2019, 2015–2019, 2011–2014). The highest correlation between the ground-based stations and corresponding EO data were reported for temperature (mean ρ = 0.779), followed by rainfall (mean ρ = 0.687) and wind speed (mean ρ = 0.639). Overall, positive correlations were observed between weekly dengue cases and rainfall for Selangor and Petaling across all time periods with significant correlations being observed for the period from 2011 to 2019 and 2015 to 2019. In addition, positive significant correlations were also observed between weekly dengue cases and temperature for Kelantan and Kota Baharu across all time periods, while negative significant correlations between weekly dengue cases and temperature were observed in Selangor and Petaling across all time periods. Overall negative correlations were observed between weekly dengue cases and wind speed in all areas from 2011 to 2019 and 2015 to 2019, with significant correlations being observed for the period from 2015 to 2019. EO-derived meteorological variables explained 48.2% of the variation in dengue cases in Selangor. Moderate to strong correlations were observed between meteorological variables recorded from EO data derived from satellites and ground stations, thereby justifying the use of EO data as a viable alternative to ground stations for recording meteorological variables. Both rainfall and temperature were found to be positively correlated with weekly dengue cases; however, wind speed was negatively correlated with dengue cases. Full article
(This article belongs to the Special Issue Vector-Borne Diseases and Public Health)
Show Figures

Figure 1

22 pages, 2020 KiB  
Review
Impact of Microplastics and Nanoplastics on Human Health
by Maxine Swee-Li Yee, Ling-Wei Hii, Chin King Looi, Wei-Meng Lim, Shew-Fung Wong, Yih-Yih Kok, Boon-Keat Tan, Chiew-Yen Wong and Chee-Onn Leong
Nanomaterials 2021, 11(2), 496; https://doi.org/10.3390/nano11020496 - 16 Feb 2021
Cited by 644 | Viewed by 63428
Abstract
Plastics have enormous impacts to every aspect of daily life including technology, medicine and treatments, and domestic appliances. Most of the used plastics are thrown away by consumers after a single use, which has become a huge environmental problem as they will end [...] Read more.
Plastics have enormous impacts to every aspect of daily life including technology, medicine and treatments, and domestic appliances. Most of the used plastics are thrown away by consumers after a single use, which has become a huge environmental problem as they will end up in landfill, oceans and other waterways. These plastics are discarded in vast numbers each day, and the breaking down of the plastics from micro- to nano-sizes has led to worries about how toxic these plastics are to the environment and humans. While, there are several earlier studies reported the effects of micro- and nano-plastics have on the environment, there is scant research into their impact on the human body at subcellular or molecular levels. In particular, the potential of how nano-plastics move through the gut, lungs and skin epithelia in causing systemic exposure has not been examined thoroughly. This review explores thoroughly on how nanoplastics are created, how they behave/breakdown within the environment, levels of toxicity and pollution of these nanoplastics, and the possible health impacts on humans, as well as suggestions for additional research. This paper aims to inspire future studies into core elements of micro- and nano-plastics, the biological reactions caused by their specific and unusual qualities. Full article
(This article belongs to the Special Issue Nanoparticles in the Environment and Nanotoxicology)
Show Figures

Figure 1

26 pages, 3664 KiB  
Article
Production of Biodegradable Palm Oil-Based Polyurethane as Potential Biomaterial for Biomedical Applications
by Fang Hoong Yeoh, Choy Sin Lee, Yew Beng Kang, Shew Fung Wong, Sit Foon Cheng and Wei Seng Ng
Polymers 2020, 12(8), 1842; https://doi.org/10.3390/polym12081842 - 17 Aug 2020
Cited by 46 | Viewed by 8054
Abstract
Being biodegradable and biocompatible are crucial characteristics for biomaterial used for medical and biomedical applications. Vegetable oil-based polyols are known to contribute both the biodegradability and biocompatibility of polyurethanes; however, petrochemical-based polyols were often incorporated to improve the thermal and mechanical properties of [...] Read more.
Being biodegradable and biocompatible are crucial characteristics for biomaterial used for medical and biomedical applications. Vegetable oil-based polyols are known to contribute both the biodegradability and biocompatibility of polyurethanes; however, petrochemical-based polyols were often incorporated to improve the thermal and mechanical properties of polyurethane. In this work, palm oil-based polyester polyol (PPP) derived from epoxidized palm olein and glutaric acid was reacted with isophorone diisocyanate to produce an aliphatic polyurethane, without the incorporation of any commercial petrochemical-based polyol. The effects of water content and isocyanate index were investigated. The polyurethanes produced consisted of > 90% porosity with interconnected micropores and macropores (37–1700 µm) and PU 1.0 possessed tensile strength and compression stress of 111 kPa and 64 kPa. The polyurethanes with comparable thermal stability, yet susceptible to enzymatic degradation with 7–59% of mass loss after 4 weeks of treatment. The polyurethanes demonstrated superior water uptake (up to 450%) and did not induce significant changes in pH of the medium. The chemical changes of the polyurethanes after enzymatic degradation were evaluated by FTIR and TGA analyses. The polyurethanes showed cell viability of 53.43% and 80.37% after 1 and 10 day(s) of cytotoxicity test; and cell adhesion and proliferation in cell adhesion test. The polyurethanes produced demonstrated its potential as biomaterial for soft tissue engineering applications. Full article
(This article belongs to the Special Issue Advances in Sustainable Polyurethanes)
Show Figures

Graphical abstract

22 pages, 1075 KiB  
Review
Molecular Mechanisms and Potential Therapeutic Reversal of Pancreatic Cancer-Induced Immune Evasion
by Li-Lian Gan, Ling-Wei Hii, Shew-Fung Wong, Chee-Onn Leong and Chun-Wai Mai
Cancers 2020, 12(7), 1872; https://doi.org/10.3390/cancers12071872 - 11 Jul 2020
Cited by 25 | Viewed by 7168
Abstract
Pancreatic cancer ranks high among the causes of cancer-related mortality. The prognosis of this grim condition has not improved significantly over the past 50 years, despite advancement in imaging techniques, cancer genetics and treatment modalities. Due to the relative difficulty in the early [...] Read more.
Pancreatic cancer ranks high among the causes of cancer-related mortality. The prognosis of this grim condition has not improved significantly over the past 50 years, despite advancement in imaging techniques, cancer genetics and treatment modalities. Due to the relative difficulty in the early detection of pancreatic tumors, as low as 20% of patients are eligible for potentially curative surgery; moreover, chemotherapy and radiotherapy (RT) do not confer a great benefit in the overall survival of the patients. Currently, emerging developments in immunotherapy have yet to bring a significant clinical advantage among pancreatic cancer patients. In fact, pancreatic tumor-driven immune evasion possesses one of the greatest challenges leading to immunotherapeutic resistance. Most of the immune escape pathways are innate, while poor priming of hosts’ immune response and immunoediting constitute the adaptive immunosuppressive machinery. In this review, we extensively discuss the pathway perturbations undermining the anti-tumor immunity specific to pancreatic cancer. We also explore feasible up-and-coming therapeutic strategies that may restore immunity and address therapeutic resistance, bringing hope to eliminate the status quo in pancreatic cancer prognosis. Full article
Show Figures

Figure 1

Back to TopTop