Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = Sharanya Sur

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3482 KiB  
Article
Properties of Polarized Synchrotron Emission from Fluctuation Dynamo Action—II. Effects of Turbulence Driving in the ICM and Beam Smoothing
by Aritra Basu and Sharanya Sur
Galaxies 2021, 9(3), 62; https://doi.org/10.3390/galaxies9030062 - 5 Sep 2021
Cited by 7 | Viewed by 2222
Abstract
Polarized synchrotron emission from the radio halos of diffuse intracluster medium (ICM) in galaxy clusters are yet to be observed. To investigate the expected polarization in the ICM, we use high resolution (1 kpc) magnetohydrodynamic simulations of fluctuation dynamos, which produces intermittent magnetic [...] Read more.
Polarized synchrotron emission from the radio halos of diffuse intracluster medium (ICM) in galaxy clusters are yet to be observed. To investigate the expected polarization in the ICM, we use high resolution (1 kpc) magnetohydrodynamic simulations of fluctuation dynamos, which produces intermittent magnetic field structures, for varying scales of turbulent driving (lf) to generate synthetic observations of the polarized emission. We focus on how the inferred diffuse polarized emission for different lf is affected due to smoothing by a finite telescope resolution. The mean fractional polarization p vary as plf1/2 with p>20% for lf60 kpc, at frequencies ν>4GHz. Faraday depolarization at ν<3 GHz leads to deviation from this relation, and in combination with beam depolarization, filamentary polarized structures are completely erased, reducing p to below 5% level at ν1 GHz. Smoothing on scales up to 30 kpc reduces p above 4 GHz by at most a factor of 2 compared to that expected at 1 kpc resolution of the simulations, especially for lf100 kpc, while at ν<3 GHz, p is reduced by a factor of more than 5 for lf100 kpc, and by more than 10 for lf100 kpc. Our results suggest that observational estimates of, or constrain on, p at ν4 GHz could be used as an indicator of the turbulent driving scale in the ICM. Full article
Show Figures

Figure 1

37 pages, 555 KiB  
Article
Magnetism Science with the Square Kilometre Array
by George Heald, Sui Ann Mao, Valentina Vacca, Takuya Akahori, Ancor Damas-Segovia, B. M. Gaensler, Matthias Hoeft, Ivan Agudo, Aritra Basu, Rainer Beck, Mark Birkinshaw, Annalisa Bonafede, Tyler L. Bourke, Andrea Bracco, Ettore Carretti, Luigina Feretti, J. M. Girart, Federica Govoni, James A. Green, JinLin Han, Marijke Haverkorn, Cathy Horellou, Melanie Johnston-Hollitt, Roland Kothes, Tom Landecker, Błażej Nikiel-Wroczyński, Shane P. O’Sullivan, Marco Padovani, Frédérick Poidevin, Luke Pratley, Marco Regis, Christopher John Riseley, Tim Robishaw, Lawrence Rudnick, Charlotte Sobey, Jeroen M. Stil, Xiaohui Sun, Sharanya Sur, A. Russ Taylor, Alec Thomson, Cameron L. Van Eck, Franco Vazza, Jennifer L. West and the SKA Magnetism Science Working Groupadd Show full author list remove Hide full author list
Galaxies 2020, 8(3), 53; https://doi.org/10.3390/galaxies8030053 - 6 Jul 2020
Cited by 67 | Viewed by 7841
Abstract
The Square Kilometre Array (SKA) will answer fundamental questions about the origin, evolution, properties, and influence of magnetic fields throughout the Universe. Magnetic fields can illuminate and influence phenomena as diverse as star formation, galactic dynamics, fast radio bursts, active galactic nuclei, large-scale [...] Read more.
The Square Kilometre Array (SKA) will answer fundamental questions about the origin, evolution, properties, and influence of magnetic fields throughout the Universe. Magnetic fields can illuminate and influence phenomena as diverse as star formation, galactic dynamics, fast radio bursts, active galactic nuclei, large-scale structure, and dark matter annihilation. Preparations for the SKA are swiftly continuing worldwide, and the community is making tremendous observational progress in the field of cosmic magnetism using data from a powerful international suite of SKA pathfinder and precursor telescopes. In this contribution, we revisit community plans for magnetism research using the SKA, in light of these recent rapid developments. We focus in particular on the impact that new radio telescope instrumentation is generating, thus advancing our understanding of key SKA magnetism science areas, as well as the new techniques that are required for processing and interpreting the data. We discuss these recent developments in the context of the ultimate scientific goals for the SKA era. Full article
(This article belongs to the Special Issue New Perspectives on Galactic Magnetism)
Show Figures

Figure 1

Back to TopTop