Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Authors = Sam Bhat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 10336 KiB  
Article
Investigation of Rutting Performance in Geogrid-Reinforced Asphalt by Penetration Test
by Sheng-Lin Wang, Danrong Wang, Susan Tighe, Sam Bhat and Shunde Yin
Materials 2023, 16(22), 7221; https://doi.org/10.3390/ma16227221 - 18 Nov 2023
Cited by 1 | Viewed by 1421
Abstract
Permanent deformation, or rutting, is one of several critical distresses in flexible pavements. This paper introduced a novel experimental method, a penetration test, for asphalt mixtures to quantify the effects of glass fibre geogrids embedded in asphalt under repeated loading. It was found [...] Read more.
Permanent deformation, or rutting, is one of several critical distresses in flexible pavements. This paper introduced a novel experimental method, a penetration test, for asphalt mixtures to quantify the effects of glass fibre geogrids embedded in asphalt under repeated loading. It was found that the evolution of permanent deformation (εp) and its strain rate have three clearly identifiable stages. It was also observed that the presence of the geogrid increased the flow number and the number of cycles to failure significantly compared to control samples. Some of the current εp fitting models were found to be valid for deformation prediction under penetration. In addition, a new simple FN calculation method was also proposed based on strain rate and it showed consistent results. In particular, geogrid type “Grid10”, which has smaller aperture size (12.7 mm) had slightly better reinforcement performance regarding the rutting resistance due to its larger contact area. Overall, the test and data analysis method presented in this study could be an important reference for future investigations on geosynthetic-reinforced pavement materials. Full article
(This article belongs to the Special Issue Design, Application and Performance Improvement of Pavement Materials)
Show Figures

Figure 1

21 pages, 10031 KiB  
Article
Construction of Geosynthetic–Reinforced Pavements and Evaluation of Their Impacts
by Danrong Wang, Sheng-Lin Wang, Susan Tighe, Sam Bhat and Shunde Yin
Appl. Sci. 2023, 13(18), 10327; https://doi.org/10.3390/app131810327 - 15 Sep 2023
Cited by 6 | Viewed by 2727
Abstract
Geosynthetic materials (i.e., geogrids, geotextiles and other geocomposites) act as an interlayer system and are widely used in construction applications. In pavement structures, geosynthetic layers provide potential benefits such as reinforcement, reflective cracking mitigation, increased fatigue life, and improved drainage and filtering. However, [...] Read more.
Geosynthetic materials (i.e., geogrids, geotextiles and other geocomposites) act as an interlayer system and are widely used in construction applications. In pavement structures, geosynthetic layers provide potential benefits such as reinforcement, reflective cracking mitigation, increased fatigue life, and improved drainage and filtering. However, few studies have addressed the installation and construction practices of geosynthetics in pavements. Furthermore, the study of geosynthetics and their contribution during construction are limited. In this paper, a full-scale field study was conducted and three trial sections were constructed; two types of geosynthetics, a fibreglass geogrid and a geogrid composite, were installed in the asphalt binder course and at the interface between the subgrade and base layer, respectively, to be compared with a control section without geosynthetic reinforcement. Trial sections were instrumented to monitor the pressure applied on the subgrade, the strain in the base lift of the asphalt binder course, the temperature, and the moisture within the pavement structure during construction. In addition, post-construction field testing was performed to measure the stiffness of the pavements after construction. The results indicated that geosynthetic-reinforced pavements can maintain pavement resilience during construction and significantly mitigate the disturbances caused by construction activities. The geogrid embedded in the asphalt layer was demonstrated to reduce the pressure at the subgrade caused by paving equipment by 70% compared with the control section, while simultaneously reducing the longitudinal and transverse strain at the bottom of the asphalt layer by 54% and 99%. Observations from the geogrid composite test section also demonstrate the potential to minimize the impacts of future freeze–thaw at the subgrade due to the improved drainage and indirect insulation effect. Full article
Show Figures

Figure 1

20 pages, 8632 KiB  
Article
An In-Situ Geotextile Filtration Method for Suspended Solids Attenuation and Algae Suppression in a Canadian Eutrophic Lake
by Antônio Cavalcante Pereira, Catherine N. Mulligan, Dileep Palakkeel Veetil and Sam Bhat
Water 2023, 15(3), 441; https://doi.org/10.3390/w15030441 - 22 Jan 2023
Cited by 6 | Viewed by 11871
Abstract
Climate change and human actions will exacerbate eutrophication cases in inland waters. By external or internal inputs, there will be an increase in nutrient concentrations in those systems worldwide. Those nutrients will bring faster trophic changes to inland waters and possible health and [...] Read more.
Climate change and human actions will exacerbate eutrophication cases in inland waters. By external or internal inputs, there will be an increase in nutrient concentrations in those systems worldwide. Those nutrients will bring faster trophic changes to inland waters and possible health and recreational advisories. A novel approach using a floating filtration system, a silt curtain, and geotextiles (woven and non-woven) is under investigation. This method has been applied as an in-situ pilot experiment deployed at Lake Caron, a shallow eutrophic lake in Quebec, for two summers. Turbidity, total suspended solids (TSS), total phosphorus (TP), blue-green-algae-phycocyanin (BGA-PC) and chlorophyll-a showed statistically significant average removal efficiencies of 53%, 22%, 49%, 57% and 56%, respectively, in the first year and 17%, 36%, 18%, 34% and 32% in the second. Statistical correlations were found with TSS, turbidity and variables that could represent particles (TP, turbidity, chlorophyll-a). Employing this in situ management method could be a promising remediation for not only shallow lakes (average depth < 2 m) but also for ponds, rivers, coastal regions, bays and other water types, to enable cleaner water for future generations. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

Back to TopTop