Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Authors = Pedram Roghanchi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3263 KiB  
Review
From Dust to Disease: A Review of Respirable Coal Mine Dust Lung Deposition and Advances in CFD Modeling
by Eurico Madureira, Ahmed Aboelezz, Wei-Chung Su and Pedram Roghanchi
Minerals 2023, 13(10), 1311; https://doi.org/10.3390/min13101311 - 10 Oct 2023
Cited by 6 | Viewed by 2675
Abstract
The United States has witnessed a concerning surge in the incidence of diseases like Coal Workers’ Pneumoconiosis (CWP), despite numerous efforts aimed at prevention. This study delves into the realm of respiratory health by investigating the deposition of dust particles within the respiratory [...] Read more.
The United States has witnessed a concerning surge in the incidence of diseases like Coal Workers’ Pneumoconiosis (CWP), despite numerous efforts aimed at prevention. This study delves into the realm of respiratory health by investigating the deposition of dust particles within the respiratory tract and lungs. By analyzing particles of varying sizes, shapes, velocities, and aerodynamic diameters, we aim to gain a comprehensive understanding of their impact on deposition patterns. This insight could potentially drive changes in dust exposure protocols within mining environments and improve monitoring practices. The interplay of several critical factors, including particle characteristics and an individual’s breathing patterns, plays a pivotal role in determining whether particles settle in the lungs or are exhaled. This paper provides a comprehensive literature review on Respirable Coal Mine Dust (RCMD), with a specific focus on examining particle deposition across different regions of the airway system and lungs. Additionally, we explore the utility of Computational Fluid Dynamics (CFD) in simulating particle behavior within the respiratory system. Predicting the precise behavior of dust particles within the respiratory airway poses a significant challenge. However, through numerical simulations, we aspire to enhance our understanding of strategies to mitigate total lung deposition by comprehensively modeling particle interactions within the respiratory system. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

17 pages, 3831 KiB  
Article
A Toxicological Study of the Respirable Coal Mine Dust: Assessment of Different Dust Sources within the Same Mine
by Milton Das, Vanessa Salinas, Jason LeBoeuf, Rifat Khan, Quiteria Jacquez, Alexandra Camacho, Mark Hovingh, Katherine Zychowski, Mohammad Rezaee, Pedram Roghanchi and Gayan Rubasinghege
Minerals 2023, 13(3), 433; https://doi.org/10.3390/min13030433 - 18 Mar 2023
Cited by 5 | Viewed by 2746
Abstract
Respirable coal mine dust (RCMD) exposure is one of the utmost health hazards to the mining community causing various health issues, including coal worker pneumoconiosis (CWP). Considering multiple potential sources of RCMD having different physicochemical properties within the same mine suggests a wide [...] Read more.
Respirable coal mine dust (RCMD) exposure is one of the utmost health hazards to the mining community causing various health issues, including coal worker pneumoconiosis (CWP). Considering multiple potential sources of RCMD having different physicochemical properties within the same mine suggests a wide range of health impacts that have not yet been studied extensively. In this work, we investigate the toxicity of lab-created RCMD based on different sources: coal seam, rock dust, host floor, and host roof collected from the same mine. Comparative samples obtained from several mines situated in various geographic locations were also assessed. This work quantifies metal leaching in simulated lung fluids and correlates dissolution with in vitro immune responses. Here, dissolution experiments were conducted using two simulated lung fluids; Gamble solution (GS) and artificial lysosomal fluid (ALF). In vitro studies were performed using a lung epithelial cell line (A549) to investigate their immune responses and cell viability. Si and Al are the most dissolved metals, among several other trace metals, such as Fe, Sr, Ba, Pb, etc. RCMD from the coal seam and the rock dust showed the least metal leaching, while the floor and roof samples dissolved the most. Results from in vitro studies showed a prominent effect on cell viability for floor and roof dust samples suggesting high toxicity. Full article
(This article belongs to the Special Issue Dust (Urban and Industrial) Medical Mineralogy and Geochemistry)
Show Figures

Graphical abstract

54 pages, 33702 KiB  
Review
Configurations and Applications of Multi-Agent Hybrid Drone/Unmanned Ground Vehicle for Underground Environments: A Review
by Chris Dinelli, John Racette, Mario Escarcega, Simon Lotero, Jeffrey Gordon, James Montoya, Chase Dunaway, Vasileios Androulakis, Hassan Khaniani, Sihua Shao, Pedram Roghanchi and Mostafa Hassanalian
Drones 2023, 7(2), 136; https://doi.org/10.3390/drones7020136 - 14 Feb 2023
Cited by 50 | Viewed by 12890
Abstract
Subterranean openings, including mines, present a unique and challenging environment for robots and autonomous exploration systems. Autonomous robots that are created today will be deployed in harsh and unexplored landscapes that humanity is increasingly encountering in its scientific and technological endeavors. Terrestrial and [...] Read more.
Subterranean openings, including mines, present a unique and challenging environment for robots and autonomous exploration systems. Autonomous robots that are created today will be deployed in harsh and unexplored landscapes that humanity is increasingly encountering in its scientific and technological endeavors. Terrestrial and extraterrestrial environments pose significant challenges for both humans and robots: they are inhospitable and inaccessible to humans due to a lack of space or oxygen, poor or no illumination, unpredictable terrain, a GPS-denied environment, and a lack of satellite imagery or mapping information of any type. Underground mines provide a good physical simulation for these types of environments, and thus, can be useful for testing and developing highly sought-after autonomous navigation frameworks for autonomous agents. This review presents a collective study of robotic systems, both of individual and hybrid types, intended for deployment in such environments. The prevalent configurations, practices for their construction and the hardware equipment of existing multi-agent hybrid robotic systems will be discussed. It aims to provide a supplementary tool for defining the state of the art of coupled Unmanned Ground Vehicle (UGV)–Unmanned Aerial Vehicle (UAV) systems implemented for underground exploration and navigation purposes, as well as to provide some suggestions for multi-agent robotic system solutions, and ultimately, to support the development of a semi-autonomous hybrid UGV–UAV system to assist with mine emergency responses. Full article
Show Figures

Figure 1

23 pages, 33353 KiB  
Article
Intrinsically Safe Drone Propulsion System for Underground Coal Mining Applications: Computational and Experimental Studies
by Ahmed Aboelezz, David Wetz, Jane Lehr, Pedram Roghanchi and Mostafa Hassanalian
Drones 2023, 7(1), 44; https://doi.org/10.3390/drones7010044 - 8 Jan 2023
Cited by 7 | Viewed by 4412
Abstract
The mining industry has recently shown increased interest in drones for routine activities in underground and surface mines. Designing a drone for coal mines is extremely complicated since the Mine Safety and Health Administration (MSHA) has tight guidelines for any equipment that can [...] Read more.
The mining industry has recently shown increased interest in drones for routine activities in underground and surface mines. Designing a drone for coal mines is extremely complicated since the Mine Safety and Health Administration (MSHA) has tight guidelines for any equipment that can be used in underground coal mines. Due to these criteria, designing a drone for underground coal mining is exceedingly difficult. This paper explores the challenges of creating an intrinsically safe drone propulsion system. To address the challenges of designing an intrinsically safe drone’s propulsion system for an underground coal mine, this work aims to investigate the potential approaches to enhance efficiency and mitigate the heat. The study begins with the drone’s sizing approach before moving on to the experimental setup that is utilized to test the drone’s propulsion system. Finally, answers to numerous issues arising during the inquiry are offered, and these solutions are empirically explored. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

29 pages, 4990 KiB  
Article
Characterization and Toxicity Analysis of Lab-Created Respirable Coal Mine Dust from the Appalachians and Rocky Mountains Regions
by Vanessa Salinas, Milton Das, Quiteria Jacquez, Alexandra Camacho, Katherine Zychowski, Mark Hovingh, Alexander Medina, Gayan Rubasinghege, Mohammad Rezaee, Jonas Baltrusaitis, Neal Fairley and Pedram Roghanchi
Minerals 2022, 12(7), 898; https://doi.org/10.3390/min12070898 - 17 Jul 2022
Cited by 13 | Viewed by 3660
Abstract
Coal mine workers are continuously exposed to respirable coal mine dust (RCMD) in workplaces, causing severe lung diseases. RCMD characteristics and their relations with dust toxicity need further research to understand the adverse exposure effects to RCMD. The geographic clustering of coal workers’ [...] Read more.
Coal mine workers are continuously exposed to respirable coal mine dust (RCMD) in workplaces, causing severe lung diseases. RCMD characteristics and their relations with dust toxicity need further research to understand the adverse exposure effects to RCMD. The geographic clustering of coal workers’ pneumoconiosis (CWP) suggests that RCMD in the Appalachian region may exhibit more toxicity than other geographic regions such as the Rocky Mountains. This study investigates the RCMD characteristics and toxicity based on geographic location. Dissolution experiments in simulated lung fluids (SLFs) and in vitro responses were conducted to determine the toxicity level of samples collected from five mines in the Rocky Mountains and Appalachian regions. Dust characteristics were investigated using Fourier-transform infrared spectroscopy, scanning electron microscopy, the BET method, total microwave digestion, X-ray diffraction, and X-ray photoelectron spectroscopy. Inductively coupled plasma mass spectrometry was conducted to determine the concentration of metals dissolved in the SLFs. Finer particle sizes and higher mineral and elemental contents were found in samples from the Appalachian regions. Si, Al, Fe, Cu, Sr, and Pb were found in dissolution experiments, but no trends were found indicating higher dissolutions in the Appalachian region. In vitro studies indicated a proinflammatory response in epithelial and macrophage cells, suggesting their possible participation in pneumoconiosis and lung diseases development. Full article
(This article belongs to the Special Issue Mineralogic Analysis of Respirable Dust)
Show Figures

Figure 1

25 pages, 11104 KiB  
Review
Respirable Coal Mine Dust: A Review of Respiratory Deposition, Regulations, and Characterization
by Younes Shekarian, Elham Rahimi, Mohammad Rezaee, Wei-Chung Su and Pedram Roghanchi
Minerals 2021, 11(7), 696; https://doi.org/10.3390/min11070696 - 28 Jun 2021
Cited by 45 | Viewed by 8093
Abstract
In the late 1990s, despite years of efforts to understand and reduce coal worker’s pneumoconiosis (CWP) prevalence from more than 30% in 1970 to less than 4.2%, the level of occurrence among the US coal miners increased unexpectedly. The recent resurgence of lung [...] Read more.
In the late 1990s, despite years of efforts to understand and reduce coal worker’s pneumoconiosis (CWP) prevalence from more than 30% in 1970 to less than 4.2%, the level of occurrence among the US coal miners increased unexpectedly. The recent resurgence of lung diseases has raised concerns in the scientific and regulatory communities. In 2014, the United States Mine Safety and Health Administration (MSHA) issued a new dust rule changing the respirable coal mine dust (RCMD) exposure limits, measurement technology, and sampling protocol. The analysis for probable causes for the substantial increase in the CWP incidence rate is rather complicated. This paper aims to conduct a review of RCMD respiratory deposition, health effects, monitoring, regulations, and particle characteristics. The primary sources of RCMD along with the health risks from potential exposure are highlighted, and the current RCMD exposure regulations of the major coal producer countries are compared. A summary of RCMD characterization studies from 1972 to the present is provided. A review of the literature revealed that numerous factors, including geological and mining parameters, advancements in mining practices, particle characteristics, and monitoring approaches are considered to contribute to the recent resurgence of RCMD lung diseases. However, the root causes of the problem are still unknown. The effectiveness of the new dust rules in the United States will probably take years to be correctly assessed. Therefore, future research is needed to understand the relationship between RCMD particle characteristics and lung deposition, and the efficacy of current monitoring practices to measure the true dose of RCMD exposure. Full article
Show Figures

Figure 1

25 pages, 2825 KiB  
Review
A Comprehensive Review of Applications of Drone Technology in the Mining Industry
by Javad Shahmoradi, Elaheh Talebi, Pedram Roghanchi and Mostafa Hassanalian
Drones 2020, 4(3), 34; https://doi.org/10.3390/drones4030034 - 15 Jul 2020
Cited by 257 | Viewed by 36024
Abstract
This paper aims to provide a comprehensive review of the current state of drone technology and its applications in the mining industry. The mining industry has shown increased interest in the use of drones for routine operations. These applications include 3D mapping of [...] Read more.
This paper aims to provide a comprehensive review of the current state of drone technology and its applications in the mining industry. The mining industry has shown increased interest in the use of drones for routine operations. These applications include 3D mapping of the mine environment, ore control, rock discontinuities mapping, postblast rock fragmentation measurements, and tailing stability monitoring, to name a few. The article offers a review of drone types, specifications, and applications of commercially available drones for mining applications. Finally, the research needs for the design and implementation of drones for underground mining applications are discussed. Full article
Show Figures

Figure 1

Back to TopTop