Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Authors = Patrick M. Meyers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
64 pages, 3716 KiB  
Review
Stochastic Gravitational-Wave Backgrounds: Current Detection Efforts and Future Prospects
by Arianna I. Renzini, Boris Goncharov, Alexander C. Jenkins and Patrick M. Meyers
Galaxies 2022, 10(1), 34; https://doi.org/10.3390/galaxies10010034 - 14 Feb 2022
Cited by 85 | Viewed by 9499
Abstract
The collection of individually resolvable gravitational wave (GW) events makes up a tiny fraction of all GW signals that reach our detectors, while most lie below the confusion limit and are undetected. Similarly to voices in a crowded room, the collection of unresolved [...] Read more.
The collection of individually resolvable gravitational wave (GW) events makes up a tiny fraction of all GW signals that reach our detectors, while most lie below the confusion limit and are undetected. Similarly to voices in a crowded room, the collection of unresolved signals gives rise to a background that is well-described via stochastic variables and, hence, referred to as the stochastic GW background (SGWB). In this review, we provide an overview of stochastic GW signals and characterise them based on features of interest such as generation processes and observational properties. We then review the current detection strategies for stochastic backgrounds, offering a ready-to-use manual for stochastic GW searches in real data. In the process, we distinguish between interferometric measurements of GWs, either by ground-based or space-based laser interferometers, and timing-residuals analyses with pulsar timing arrays (PTAs). These detection methods have been applied to real data both by large GW collaborations and smaller research groups, and the most recent and instructive results are reported here. We close this review with an outlook on future observations with third generation detectors, space-based interferometers, and potential noninterferometric detection methods proposed in the literature. Full article
(This article belongs to the Special Issue Present and Future of Gravitational Wave Astronomy)
Show Figures

Figure 1

18 pages, 2282 KiB  
Article
A Linear Inversion Approach to Measuring the Composition and Directionality of the Seismic Noise Field
by Patrick M. Meyers, Tanner Prestegard, Vuk Mandic, Victor C. Tsai, Daniel C. Bowden, Andrew Matas, Gary Pavlis and Ross Caton
Remote Sens. 2021, 13(16), 3097; https://doi.org/10.3390/rs13163097 - 5 Aug 2021
Cited by 2 | Viewed by 2979
Abstract
We develop a linear inversion technique for measuring the modal composition and directionality of ambient seismic noise. The technique draws from similar techniques used in astrophysics and gravitational-wave physics, and relies on measuring cross-correlations between different seismometer channels in a seismometer array. We [...] Read more.
We develop a linear inversion technique for measuring the modal composition and directionality of ambient seismic noise. The technique draws from similar techniques used in astrophysics and gravitational-wave physics, and relies on measuring cross-correlations between different seismometer channels in a seismometer array. We characterize the sensitivity and the angular resolution of this technique using a series of simulations and real-world tests. We then apply the technique to data acquired by the three-dimensional seismometer array at the Homestake mine in Lead, SD, to estimate the composition and directionality of the seismic noise at microseism frequencies. We show that, at times of low-microseism amplitudes, noise is dominated by body waves (P and S), while at high-microseism times, the noise is dominated by surface Rayleigh waves. Full article
(This article belongs to the Special Issue Advances in Seismic Interferometry)
Show Figures

Figure 1

Back to TopTop