Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Authors = Oleg V. Vasilyev ORCID = 0000-0003-0294-6097

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2691 KiB  
Article
Size Dependence of the Band Gap of Core–Shell Tantalum and Tantalum Oxide (V) Nanoclusters
by Valentin A. Shilov, Petr V. Borisyuk, Diana V. Bortko, Smagul Karazhanov, Yuri Y. Lebedinskii and Oleg S. Vasilyev
Nanomaterials 2025, 15(1), 14; https://doi.org/10.3390/nano15010014 - 26 Dec 2024
Cited by 1 | Viewed by 823
Abstract
Monodisperse films of spherical tantalum oxide (V) nanoclusters and spherical tantalum nanoclusters with a tantalum oxide shell with diameters of 1.4–8 nm were obtained by magnetron sputtering. The size of the deposited nanoclusters was controlled using a quadrupole mass filter. The chemical composition [...] Read more.
Monodisperse films of spherical tantalum oxide (V) nanoclusters and spherical tantalum nanoclusters with a tantalum oxide shell with diameters of 1.4–8 nm were obtained by magnetron sputtering. The size of the deposited nanoclusters was controlled using a quadrupole mass filter. The chemical composition was certified using the XPS method. Using the Reflected Electron Energy Loss Spectroscopy (REELS), the dependence of the band gap width on the nanocluster size was determined. It was found that starting from a certain nanocluster size, the band gap width increases as the nanocluster size decreases. Based on experimental data and a theoretical model, the effective mass of electrons dependence as a function of nanocluster size was obtained. Full article
(This article belongs to the Special Issue Morphological Design and Synthesis of Nanoparticles (Second Edition))
Show Figures

Figure 1

15 pages, 3351 KiB  
Article
New Application of the Commercially Available Dye Celestine Blue B as a Sensitive and Selective Fluorescent “Turn-On” Probe for Endogenous Detection of HOCl and Reactive Halogenated Species
by Veronika E. Reut, Stanislav O. Kozlov, Igor V. Kudryavtsev, Natalya A. Grudinina, Valeria A. Kostevich, Nikolay P. Gorbunov, Daria V. Grigorieva, Julia A. Kalvinkovskaya, Sergey B. Bushuk, Elena Yu Varfolomeeva, Natalia D. Fedorova, Irina V. Gorudko, Oleg M. Panasenko, Vadim B. Vasilyev and Alexey V. Sokolov
Antioxidants 2022, 11(9), 1719; https://doi.org/10.3390/antiox11091719 - 30 Aug 2022
Cited by 5 | Viewed by 3681
Abstract
Hypochlorous acid (HOCl) derived from hydrogen peroxide and chloride anion by myeloperoxidase (MPO) plays a significant role in physiological and pathological processes. Herein we report a phenoxazine-based fluorescent probe Celestine Blue B (CB) that is applicable for HOCl detection in living cells and [...] Read more.
Hypochlorous acid (HOCl) derived from hydrogen peroxide and chloride anion by myeloperoxidase (MPO) plays a significant role in physiological and pathological processes. Herein we report a phenoxazine-based fluorescent probe Celestine Blue B (CB) that is applicable for HOCl detection in living cells and for assaying the chlorinating activity of MPO. A remarkable selectivity and sensitivity (limit of detection is 32 nM), along with a rapid “turn-on” response of CB to HOCl was demonstrated. Furthermore, the probe was able to detect endogenous HOCl and reactive halogenated species by fluorescence spectroscopy, confocal microscopy, and flow cytometry techniques. Hence, CB is a promising tool for investigating the role of HOCl in health and disease and for screening the drugs capable of regulating MPO activity. Full article
Show Figures

Figure 1

12 pages, 1179 KiB  
Article
Volumetric Rendering on Wavelet-Based Adaptive Grid
by Alexei V. Vezolainen, Gordon Erlebacher, Oleg V. Vasilyev and David A. Yuen
Fluids 2022, 7(7), 245; https://doi.org/10.3390/fluids7070245 - 16 Jul 2022
Viewed by 2862
Abstract
Numerical modeling of physical phenomena frequently involves processes across a wide range of spatial and temporal scales. In the last two decades, the advancements in wavelet-based numerical methodologies to solve partial differential equations, combined with the unique properties of wavelet analysis to resolve [...] Read more.
Numerical modeling of physical phenomena frequently involves processes across a wide range of spatial and temporal scales. In the last two decades, the advancements in wavelet-based numerical methodologies to solve partial differential equations, combined with the unique properties of wavelet analysis to resolve localized structures of the solution on dynamically adaptive computational meshes, make it feasible to perform large-scale numerical simulations of a variety of physical systems on a dynamically adaptive computational mesh that changes both in space and time. Volumetric visualization of the solution is an essential part of scientific computing, yet the existing volumetric visualization techniques do not take full advantage of multi-resolution wavelet analysis and are not fully tailored for visualization of a compressed solution on the wavelet-based adaptive computational mesh. Our objective is to explore the alternatives for the visualization of time-dependent data on space-time varying adaptive mesh using volume rendering while capitalizing on the available sparse data representation. Two alternative formulations are explored. The first one is based on volumetric ray casting of multi-scale datasets in wavelet space. Rather than working with the wavelets at the finest possible resolution, a partial inverse wavelet transform is performed as a preprocessing step to obtain scaling functions on a uniform grid at a user-prescribed resolution. As a result, a solution in physical space is represented by a superposition of scaling functions on a coarse regular grid and wavelets on an adaptive mesh. An efficient and accurate ray casting algorithm is based just on these coarse scaling functions. Additional details are added during the ray tracing by taking an appropriate number of wavelets into account based on support overlap with the interpolation point, wavelet coefficient magnitude, and other characteristics, such as opacity accumulation (front to back ordering) and deviation from frontal viewing direction. The second approach is based on complementing of wavelet-based adaptive mesh to the traditional Adaptive Mesh Refinement (AMR) mesh. Both algorithms are illustrated and compared to the existing volume visualization software for Rayleigh-Benard thermal convection and electron density data sets in terms of rendering time and visual quality for different data compression of both wavelet-based and AMR adaptive meshes. Full article
(This article belongs to the Special Issue Wavelets and Fluids)
Show Figures

Figure 1

35 pages, 3727 KiB  
Article
A Wavelet-Based Adaptive Finite Element Method for the Stokes Problems
by Yury A. Mishin, Oleg V. Vasilyev and Taras V. Gerya
Fluids 2022, 7(7), 221; https://doi.org/10.3390/fluids7070221 - 30 Jun 2022
Cited by 1 | Viewed by 2333
Abstract
In this work, we present the mathematical formulation of the new adaptive multiresolution method for the Stokes problems of highly viscous materials arising in computational geodynamics. The method is based on particle-in-cell approach—the Stokes system is solved on a static Eulerian finite element [...] Read more.
In this work, we present the mathematical formulation of the new adaptive multiresolution method for the Stokes problems of highly viscous materials arising in computational geodynamics. The method is based on particle-in-cell approach—the Stokes system is solved on a static Eulerian finite element grid and material properties are carried in space by Lagrangian material points. The Eulerian grid is adapted using the wavelet-based adaptation algorithm. Both bilinear (Q1P0, Q1Q1) and biquadratic (Q2P-1) mixed approximations for the Stokes system are supported. The proposed method is illustrated for a number of linear and nonlinear two-dimensional benchmark problems of geophysical relevance. The results of the adaptive numerical simulations using the proposed method are in an excellent agreement with those obtained on non-adaptive grids and with analytical solutions, while computational requirements are few orders of magnitude less compared to the non-adaptive simulations in terms of both time and memory usage. Full article
(This article belongs to the Special Issue Wavelets and Fluids)
Show Figures

Figure 1

17 pages, 606 KiB  
Article
Engineering and Analytical Method for Estimating the Parametric Reliability of Products by a Low Number of Tests
by Alexey G. Amosov, Vladislav A. Golikov, Mikhail V. Kapitonov, Fedor V. Vasilyev and Oleg K. Rozhdestvensky
Inventions 2022, 7(1), 24; https://doi.org/10.3390/inventions7010024 - 7 Feb 2022
Cited by 18 | Viewed by 2615
Abstract
The paper provides an overview of methods for determining reliability indicators and, on the basis of the analysis, proposes a new method for assessing the parametric reliability of products based on a small number of tests. The determination of the parameters and double [...] Read more.
The paper provides an overview of methods for determining reliability indicators and, on the basis of the analysis, proposes a new method for assessing the parametric reliability of products based on a small number of tests. The determination of the parameters and double logistic distribution based on the test results is considered, a statistical experiment was carried out, which was based on the method of statistical modeling of Monte Carlo. An example of evaluating parametric reliability by a new method is also given, on the basis of which an engineering technique is proposed. In the conclusion, remarks are made regarding the advantages of the novel method. Full article
(This article belongs to the Section Inventions and Innovation in Advanced Manufacturing)
Show Figures

Figure 1

24 pages, 2232 KiB  
Review
Wavelet-Based Adaptive Eddy-Resolving Methods for Modeling and Simulation of Complex Wall-Bounded Compressible Turbulent Flows
by Xuan Ge, Giuliano De Stefano, M. Yousuff Hussaini and Oleg V. Vasilyev
Fluids 2021, 6(9), 331; https://doi.org/10.3390/fluids6090331 - 15 Sep 2021
Cited by 13 | Viewed by 3146
Abstract
This article represents the second part of a review by De Stefano and Vasilyev (2021) on wavelet-based adaptive methods for modeling and simulation of turbulent flows. Unlike the hierarchical adaptive eddy-capturing approach, described in the first part and devoted to high-fidelity modeling [...] Read more.
This article represents the second part of a review by De Stefano and Vasilyev (2021) on wavelet-based adaptive methods for modeling and simulation of turbulent flows. Unlike the hierarchical adaptive eddy-capturing approach, described in the first part and devoted to high-fidelity modeling of incompressible flows, this companion paper focuses on the adaptive eddy-resolving framework for compressible flows in complex geometries, which also includes model-form adaptation from low to high fidelity models. A hierarchy of wavelet-based eddy-resolving methods of different fidelity has been developed for different speed regimes, various boundary conditions, and Reynolds numbers. Solutions of various fidelity are achieved using a range of modeling approaches from unsteady Reynolds-averaged Navier–Stokes simulation to delayed detached eddy simulation, wall-modeled and wall-resolved large eddy simulations. These novel methodologies open the door to construct a hierarchical approach for simulation of compressible flows covering the whole range of possibilities, from only resolving the average or dominant frequency, to capturing the intermittency of turbulence eddies, and to directly simulating the full turbulence spectrum. The generalized hierarchical wavelet-based adaptive eddy-resolving approach, once fully integrated into a single inherently interconnected simulation, results in being a very competitive and predictive tool for complicated flows in industrial design and analysis with high efficiency and accuracy. Full article
(This article belongs to the Special Issue Wavelets and Fluids)
Show Figures

Graphical abstract

17 pages, 3567 KiB  
Article
Galilean-Invariant Characteristic-Based Volume Penalization Method for Supersonic Flows with Moving Boundaries
by Nurlybek Kasimov, Eric Dymkoski, Giuliano De Stefano and Oleg V. Vasilyev
Fluids 2021, 6(8), 293; https://doi.org/10.3390/fluids6080293 - 20 Aug 2021
Cited by 13 | Viewed by 3526
Abstract
This work extends the characteristic-based volume penalization method, originally developed and demonstrated for compressible subsonic viscous flows in (J. Comput. Phys. 262, 2014), to a hyperbolic system of partial differential equations involving complex domains with moving boundaries. The proposed methodology is shown to [...] Read more.
This work extends the characteristic-based volume penalization method, originally developed and demonstrated for compressible subsonic viscous flows in (J. Comput. Phys. 262, 2014), to a hyperbolic system of partial differential equations involving complex domains with moving boundaries. The proposed methodology is shown to be Galilean-invariant and can be used to impose either homogeneous or inhomogeneous Dirichlet, Neumann, and Robin type boundary conditions on immersed boundaries. Both integrated and non-integrated variables can be treated in a systematic manner that parallels the prescription of exact boundary conditions with the approximation error rigorously controlled through an a priori penalization parameter. The proposed approach is well suited for use with adaptive mesh refinement, which allows adequate resolution of the geometry without over-resolving flow structures and minimizing the number of grid points inside the solid obstacle. The extended Galilean-invariant characteristic-based volume penalization method, while being generally applicable to both compressible Navier–Stokes and Euler equations across all speed regimes, is demonstrated for a number of supersonic benchmark flows around both stationary and moving obstacles of arbitrary shape. Full article
(This article belongs to the Special Issue Wavelets and Fluid Dynamics)
Show Figures

Graphical abstract

14 pages, 10626 KiB  
Review
Hierarchical Adaptive Eddy-Capturing Approach for Modeling and Simulation of Turbulent Flows
by Giuliano De Stefano and Oleg V. Vasilyev
Fluids 2021, 6(2), 83; https://doi.org/10.3390/fluids6020083 - 13 Feb 2021
Cited by 18 | Viewed by 2820
Abstract
A short review of wavelet-based adaptive methods for modeling and simulation of incompressible turbulent flows is presented. Wavelet-based computational modeling approaches of different fidelities are recast into an integrated hierarchical adaptive eddy-capturing turbulence modeling framework. The wavelet threshold filtering procedure and the [...] Read more.
A short review of wavelet-based adaptive methods for modeling and simulation of incompressible turbulent flows is presented. Wavelet-based computational modeling approaches of different fidelities are recast into an integrated hierarchical adaptive eddy-capturing turbulence modeling framework. The wavelet threshold filtering procedure and the associated wavelet-filtered Navier–Stokes equations are briefly discussed, along with the adaptive wavelet collocation method that is used for numerical computations. Depending on the level of wavelet thresholding, the simulation is possibly supplemented with a localized closure model. The latest advancements in spatiotemporally varying wavelet thresholding procedures along with the adaptive-anisotropic wavelet-collocation method make the development of a fully adaptive approach feasible with potential applications for complex turbulent flows. Full article
(This article belongs to the Special Issue Wavelets and Fluid Dynamics)
Show Figures

Figure 1

Back to TopTop