Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Authors = Nkosinathi G. Xulu ORCID = 0000-0003-0638-5581

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5064 KiB  
Review
Cut-Off Lows over South Africa: A Review
by Nkosinathi G. Xulu, Hector Chikoore, Mary-Jane M. Bopape, Thando Ndarana, Tshimbiluni P. Muofhe, Innocent L. Mbokodo, Rendani B. Munyai, Mukovhe V. Singo, Tumelo Mohomi, Sifiso M. S. Mbatha and Marshall L. Mdoka
Climate 2023, 11(3), 59; https://doi.org/10.3390/cli11030059 - 5 Mar 2023
Cited by 12 | Viewed by 15218
Abstract
Every year, cut-off low (COL) pressure systems produce severe weather conditions and heavy rainfall, often leading to flooding, devastation and disruption of socio-economic activities in South Africa. COLs are defined as cold-cored synoptic-scale mid-tropospheric low-pressure systems which occur in the mid-latitudes and cause [...] Read more.
Every year, cut-off low (COL) pressure systems produce severe weather conditions and heavy rainfall, often leading to flooding, devastation and disruption of socio-economic activities in South Africa. COLs are defined as cold-cored synoptic-scale mid-tropospheric low-pressure systems which occur in the mid-latitudes and cause persistent heavy rainfall. As they occur throughout the year, these weather systems are important rainfall producing systems that are also associated with extreme cold conditions and snowfalls. An in-depth review of COLs is critical due to their high impacts which affect some parts of the country regularly, affecting lives and livelihoods. Here, we provide a comprehensive review of the literature on COLs over the South African domain, whilst also comparing them with their Southern Hemisphere counterparts occurring in South America and Australia. We focus on the occurrence, development, propagation, dynamical processes and impacts of COLs on society and the environment. We also seek to understand stratospheric–tropospheric exchanges resulting from tropopause folding during the occurrence of COLs. Sometimes, COLs may extend to the surface, creating conditions conducive to extreme rainfall and high floods over South Africa, especially when impinged on the coastal escarpment. The slow propagation of COLs appears to be largely modulated by a quasi-stationary high-pressure system downstream acting as a blocking system. We also reviewed two severe COL events that occurred over the south and east coasts and found that in both cases, interactions of the low-level flow with the escarpment enhanced lifting and deep convection. It was also determined from the literature that several numerical weather prediction models struggle with placement and amounts of rainfall associated with COLs, both near the coast and on the interior plateau. Our study provides the single most comprehensive treatise that deals with COL characteristics affecting the South African domain. Full article
Show Figures

Figure 1

22 pages, 6185 KiB  
Article
Heatwave Variability and Structure in South Africa during Summer Drought
by Innocent L. Mbokodo, Mary-Jane M. Bopape, Thando Ndarana, Sifiso M. S. Mbatha, Tshimbiluni P. Muofhe, Mukovhe V. Singo, Nkosinathi G. Xulu, Tumelo Mohomi, Kingsley K. Ayisi and Hector Chikoore
Climate 2023, 11(2), 38; https://doi.org/10.3390/cli11020038 - 5 Feb 2023
Cited by 19 | Viewed by 12515
Abstract
Pronounced subsidence leading to summer drought over southern Africa causes warmer than average surface air temperatures or even heatwave (HW) conditions. We investigated the occurrence of HWs during the summer drought over South Africa based on station data and the ECMWF ERA5 reanalyses. [...] Read more.
Pronounced subsidence leading to summer drought over southern Africa causes warmer than average surface air temperatures or even heatwave (HW) conditions. We investigated the occurrence of HWs during the summer drought over South Africa based on station data and the ECMWF ERA5 reanalyses. Temperature observations from the South African Weather Service were analyzed for seasonality and long-term trends (1981–2020) as background to the occurrence and variability of HWs. We focused on three severe El Niño Southern Oscillation (ENSO)-induced drought seasons, i.e., 1982/83, 1991/92, and 2015/16, to investigate HW characteristics. While 1997/98 was among the strongest El Niño seasons, the impacts were not as severe because it coincided with an intense Angola low, which allowed for rain-bearing cloud bands to form. Results showed that the hottest months were spread across the austral summer season from December to February. Regions experiencing high mean maximum temperatures and high HW frequencies exhibited a strong ENSO signal, with record HWs occurring during 2015/16. The establishment and persistence of a middle-level high-pressure system over Botswana/Namibia (Botswana High) appears to trigger the longest-lasting HWs during drought seasons. The Botswana high is usually coupled with a near-surface continental heat low and/or tropical warm air advection towards the affected region. It was also found that intense ENSO-induced drought events coincided with high HW frequency over South Africa, such as during 1982/83, 1991/92, and the recent 2015/16 events. The results of this study contribute to understanding drought and heat wave dynamics in a region experiencing rapid warming as a result of climate change. Full article
Show Figures

Figure 1

24 pages, 5653 KiB  
Article
Vulnerability and Adaptation to Flood Hazards in Rural Settlements of Limpopo Province, South Africa
by Rendani B. Munyai, Hector Chikoore, Agnes Musyoki, James Chakwizira, Tshimbiluni P. Muofhe, Nkosinathi G. Xulu and Tshilidzi C. Manyanya
Water 2021, 13(24), 3490; https://doi.org/10.3390/w13243490 - 7 Dec 2021
Cited by 25 | Viewed by 18254
Abstract
Climate change has increased the frequency of extreme weather events such as heavy rainfall leading to floods in several regions. In Africa, rural communities are more vulnerable to flooding, particularly those that dwell in low altitude areas or near rivers and those regions [...] Read more.
Climate change has increased the frequency of extreme weather events such as heavy rainfall leading to floods in several regions. In Africa, rural communities are more vulnerable to flooding, particularly those that dwell in low altitude areas or near rivers and those regions affected by tropical storms. This study examined flood vulnerability in three rural villages in South Africa’s northern Limpopo Province and how communities are building resilience and coping with the hazard. These villages lie at the foot of the north-eastern escarpment, and are often exposed to frequent rainfall enhanced by orographic factors. Although extreme rainfall events are rare in the study area, we analyzed daily rainfall and showed how heavy rainfall of short duration can lead to flooding using case studies. Historical floods were also mapped using remote sensing via the topographical approach and two types of flooding were identified, i.e., those due to extreme rainfall and those due to poor drainage or blocked drainage channels. A field survey was also conducted using questionnaires administered to samples of affected households to identify flood vulnerability indicators and adaptation strategies. Key informant interviews were held with disaster management authorities to provide additional information on flood indicators. Subsequently, a flood vulnerability index was computed to measure the extent of flood vulnerability of the selected communities and it was found that all three villages have a ‘vulnerability to floods’ level, considered a medium level vulnerability. The study also details temporary and long-term adaptation strategies/actions employed by respondents and interventions by local authorities to mitigate the impacts of flooding. Adaptation strategies range from digging furrows to divert water and temporary relocations, to constructing a raised patio around the house. Key recommendations include the need for public awareness; implementation of a raft of improvements and a sustainable infrastructure maintenance regime; integration of modern mitigations with local indigenous knowledge; and development of programs to ensure resilience through incorporation of Integrated Development Planning. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

11 pages, 1988 KiB  
Review
Climatology of the Mascarene High and Its Influence on Weather and Climate over Southern Africa
by Nkosinathi G. Xulu, Hector Chikoore, Mary-Jane M. Bopape and Nthaduleni S. Nethengwe
Climate 2020, 8(7), 86; https://doi.org/10.3390/cli8070086 - 7 Jul 2020
Cited by 48 | Viewed by 26872
Abstract
Globally, subtropical circulation in the lower troposphere is characterized by anticyclones over the oceans. Subtropical anticyclones locate over subtropical belts, modulating weather and climate patterns in those regions. The Mascarene High is an anticyclone located over the Southern Indian Ocean and has a [...] Read more.
Globally, subtropical circulation in the lower troposphere is characterized by anticyclones over the oceans. Subtropical anticyclones locate over subtropical belts, modulating weather and climate patterns in those regions. The Mascarene High is an anticyclone located over the Southern Indian Ocean and has a vital role in weather and climate variability over Southern Africa. The warm Western Indian Ocean is a major source of moisture for the subcontinent also permitting tropical cyclone genesis. In this study, we review the dynamics of the Mascarene High, its interactions with the ocean, and its impact on weather and climate over Southern Africa. We also review studies on the evolution of subtropical anticyclones in a future warmer climate. The links between SST modes over the Indian Ocean and the strengthening and weakening of the Mascarene High have been demonstrated. One important aspect is atmospheric blocking due to the Mascarene High, which leads to anomalous rainfall and temperature events over the subcontinent. Blocking leads to landfall of tropical cyclones and slow propagation of cut-off lows resulting in severe weather and flooding over the subcontinent. Understanding how expansion of the Mascarene High due to warming will alter trade winds and storm tracks and change the mean climate of Southern Africa is crucial. Full article
Show Figures

Figure 1

Back to TopTop