Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Authors = Muhammad Yunis Daha

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3804 KiB  
Article
Enabling Intelligent 6G Communications: A Scalable Deep Learning Framework for MIMO Detection
by Muhammad Yunis Daha, Ammu Sudhakaran, Bibin Babu and Muhammad Usman Hadi
Telecom 2025, 6(3), 58; https://doi.org/10.3390/telecom6030058 - 6 Aug 2025
Viewed by 193
Abstract
Artificial intelligence (AI) has emerged as a transformative technology in the evolution of massive multiple-input multiple-output (ma-MIMO) systems, positioning them as a cornerstone for sixth-generation (6G) wireless networks. Despite their significant potential, ma-MIMO systems face critical challenges at the receiver end, particularly in [...] Read more.
Artificial intelligence (AI) has emerged as a transformative technology in the evolution of massive multiple-input multiple-output (ma-MIMO) systems, positioning them as a cornerstone for sixth-generation (6G) wireless networks. Despite their significant potential, ma-MIMO systems face critical challenges at the receiver end, particularly in signal detection under high-dimensional and noisy environments. To address these limitations, this paper proposes MIMONet, a novel deep learning (DL)-based MIMO detection framework built upon a lightweight and optimized feedforward neural network (FFNN) architecture. MIMONet is specifically designed to achieve a balance between detection performance and complexity by optimizing the neural network architecture for MIMO signal detection tasks. Through extensive simulations across multiple MIMO configurations, the proposed MIMONet detector consistently demonstrates superior bit error rate (BER) performance. It achieves a notably lower error rate compared to conventional benchmark detectors, particularly under moderate to high signal-to-noise ratio (SNR) conditions. In addition to its enhanced detection accuracy, MIMONet maintains significantly reduced computational complexity, highlighting its practical feasibility for advanced wireless communication systems. These results validate the effectiveness of the MIMONet detector in optimizing detection accuracy without imposing excessive processing burdens. Moreover, the architectural flexibility and efficiency of MIMONet lay a solid foundation for future extensions toward large-scale ma-MIMO configurations, paving the way for practical implementations in beyond-5G (B5G) and 6G communication infrastructures. Full article
Show Figures

Figure 1

17 pages, 1579 KiB  
Article
AIDETECT2: A Novel AI-Driven Signal Detection Approach for beyond 5G and 6G Wireless Networks
by Bibin Babu, Muhammad Yunis Daha, Muhammad Ikram Ashraf, Kiran Khurshid and Muhammad Usman Hadi
Electronics 2024, 13(19), 3821; https://doi.org/10.3390/electronics13193821 - 27 Sep 2024
Cited by 3 | Viewed by 1692
Abstract
Artificial intelligence (AI) is revolutionizing multiple-input-multiple-output (MIMO) technology, making it a promising contender for the coming sixth-generation (6G) and beyond-fifth-generation (B5G) networks. However, the detection process in MIMO systems is highly complex and computationally demanding. To address this challenge, this paper presents an [...] Read more.
Artificial intelligence (AI) is revolutionizing multiple-input-multiple-output (MIMO) technology, making it a promising contender for the coming sixth-generation (6G) and beyond-fifth-generation (B5G) networks. However, the detection process in MIMO systems is highly complex and computationally demanding. To address this challenge, this paper presents an optimized AI-based signal detection method known as AIDETECT-2 which is based on feed forward neural network (FFNN) for MIMO systems. The proposed AIDETECT-2 network model demonstrates superior efficiency in signal detection in comparison with conventional and AI-based MIMO detection methods, particularly in terms of symbol error rate (SER) at various signal-to-noise ratios (SNR). This paper thoroughly explores various signal detection aspects using FFNN, including the design of system architecture, preparation of data, training processes of the network model, and performance evaluation. Simulation results show that the proposed model demonstrates a significant performance improvement ranging between 13.75% to 99.995% better SER compared to the best conventional method and also achieved between 56.52% to 97.69 better SER compared to benchmark AI-based MIMO detectors at 20 dB SNR for given MIMO scenarios respectively. It also presented the computational complexity analysis of different conventional and AI-based MIMO detectors. We believe that this optimized AI-based network model can serve as a comprehensive guide for deploying deep-learning (DL) neural networks for signal detection in the forthcoming 6G wireless networks. Full article
Show Figures

Figure 1

21 pages, 1226 KiB  
Article
A Comparative Analysis of DNN and Conventional Signal Detection Techniques in SISO and MIMO Communication Systems
by Hamna Shoukat, Abdul Ahad Khurshid, Muhammad Yunis Daha, Kamal Shahid and Muhammad Usman Hadi
Telecom 2024, 5(2), 487-507; https://doi.org/10.3390/telecom5020025 - 20 Jun 2024
Cited by 2 | Viewed by 2054
Abstract
This paper investigates the performance of deep neural network (DNN)-based signal detection in multiple input, multiple output (MIMO), communication systems. MIMO technology plays a critical role in achieving high data rates and improved capacity in modern wireless communication standards like 5G. However, signal [...] Read more.
This paper investigates the performance of deep neural network (DNN)-based signal detection in multiple input, multiple output (MIMO), communication systems. MIMO technology plays a critical role in achieving high data rates and improved capacity in modern wireless communication standards like 5G. However, signal detection in MIMO systems presents significant challenges due to channel complexities. This study conducts a comparative analysis of signal detection techniques within both the single input, single output (SISO), and MIMO frameworks. The analysis focuses on the entire transmission chain, encompassing transmitters, channels, and receivers. The effectiveness of three traditional methods—maximum likelihood detection (MLD), minimum mean square error (MMSE), and zero-forcing (ZF)—is meticulously evaluated alongside a novel DNN-based approach. The proposed study presents a novel DNN-based signal detection model. While this model demonstrates superior computational efficiency and symbol error rate (SER) performance compared to more conventional techniques like MLD, MMSE, and ZF in the context of a SISO system, MIMO systems face some challenges in outperforming the conventional techniques specifically in terms of computation times. This complexity of MIMO systems presents challenges that the current DNN design has yet to fully address, indicating the need for further developments in wireless communication technology. The observed performance difference between SISO and MIMO systems underscores the need for further research on the adaptability and limitations of DNN architectures in MIMO contexts. These findings pave the way for future explorations of advanced neural network architectures and algorithms specifically designed for MIMO signal-processing tasks. By overcoming the performance gap observed in this work, such advancements hold significant promise for enhancing the effectiveness of DNN-based signal detection in MIMO communication systems. Full article
(This article belongs to the Special Issue Advances in Wireless Communication: Applications and Developments)
Show Figures

Figure 1

30 pages, 1302 KiB  
Review
A Survey of Low Rate DDoS Detection Techniques Based on Machine Learning in Software-Defined Networks
by Abdussalam Ahmed Alashhab, Mohd Soperi Mohd Zahid, Mohamed A. Azim, Muhammad Yunis Daha, Babangida Isyaku and Shimhaz Ali
Symmetry 2022, 14(8), 1563; https://doi.org/10.3390/sym14081563 - 29 Jul 2022
Cited by 58 | Viewed by 9144
Abstract
Software-defined networking (SDN) is a new networking paradigm that provides centralized control, programmability, and a global view of topology in the controller. SDN is becoming more popular due to its high audibility, which also raises security and privacy concerns. SDN must be outfitted [...] Read more.
Software-defined networking (SDN) is a new networking paradigm that provides centralized control, programmability, and a global view of topology in the controller. SDN is becoming more popular due to its high audibility, which also raises security and privacy concerns. SDN must be outfitted with the best security scheme to counter the evolving security attacks. A Distributed Denial-of-Service (DDoS) attack is a network attack that floods network links with illegitimate data using high-rate packet transmission. Illegitimate data traffic can overload network links, causing legitimate data to be dropped and network services to be unavailable. Low-rate Distributed Denial-of-Service (LDDoS) is a recent evolution of DDoS attack that has been emerged as one of the most serious vulnerabilities for the Internet, cloud computing platforms, the Internet of Things (IoT), and large data centers. Moreover, LDDoS attacks are more challenging to detect because this attack sends a large amount of illegitimate data that are disguised as legitimate traffic. Thus, traditional security mechanisms such as symmetric/asymmetric detection schemes that have been proposed to protect SDN from DDoS attacks may not be suitable or inefficient for detecting LDDoS attacks. Therefore, more research studies are needed in this domain. There are several survey papers addressing the detection mechanisms of DDoS attacks in SDN, but these studies have focused mainly on high-rate DDoS attacks. Alternatively, in this paper, we present an extensive survey of different detection mechanisms proposed to protect the SDN from LDDoS attacks using machine learning approaches. Our survey describes vulnerability issues in all layers of the SDN architecture that LDDoS attacks can exploit. Current challenges and future directions are also discussed. The survey can be used by researchers to explore and develop innovative and efficient techniques to enhance SDN’s protection against LDDoS attacks. Full article
Show Figures

Figure 1

Back to TopTop