Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Authors = Milad Memarzadeh ORCID = 0000-0001-7672-6033

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3883 KiB  
Article
Probabilistic Wildfire Segmentation Using Supervised Deep Generative Model from Satellite Imagery
by Ata Akbari Asanjan, Milad Memarzadeh, Paul Aaron Lott, Eleanor Rieffel and Shon Grabbe
Remote Sens. 2023, 15(11), 2718; https://doi.org/10.3390/rs15112718 - 24 May 2023
Cited by 11 | Viewed by 3890
Abstract
Wildfires are one of the major disasters among many and are responsible for more than 6 million acres burned in the United States alone every year. Accurate, insightful, and timely wildfire detection is needed to help authorities mitigate and prevent further destruction. Uncertainty [...] Read more.
Wildfires are one of the major disasters among many and are responsible for more than 6 million acres burned in the United States alone every year. Accurate, insightful, and timely wildfire detection is needed to help authorities mitigate and prevent further destruction. Uncertainty quantification is always a crucial part of the detection of natural disasters, such as wildfires, and modeling products can be misinterpreted without proper uncertainty quantification. In this study, we propose a supervised deep generative machine-learning model that generates stochastic wildfire detection, allowing fast and comprehensive uncertainty quantification for individual and collective events. In the proposed approach, we also aim to address the patchy and discontinuous Moderate Resolution Imaging Spectroradiometer (MODIS) wildfire product by training the proposed model with MODIS raw and combined bands to detect fire. This approach allows us to generate diverse but plausible segmentations to represent the disagreements regarding the delineation of wildfire boundaries by subject matter experts. The proposed approach generates stochastic segmentation via two model streams in which one learns meaningful stochastic latent distributions, and the other learns the visual features. Two model branches join eventually to become a supervised stochastic image-to-image wildfire detection model. The model is compared to two baseline stochastic machine-learning models: (1) with permanent dropout in training and test phases and (2) with Stochastic ReLU activations. The visual and statistical metrics demonstrate better agreements between the ground truth and the proposed model segmentations. Furthermore, we used multiple scenarios to evaluate the model comprehension, and the proposed Probabilistic U-Net model demonstrates a better understanding of the underlying physical dynamics of wildfires compared to the baselines. Full article
Show Figures

Figure 1

21 pages, 1761 KiB  
Article
Robust and Explainable Semi-Supervised Deep Learning Model for Anomaly Detection in Aviation
by Milad Memarzadeh, Ata Akbari Asanjan and Bryan Matthews
Aerospace 2022, 9(8), 437; https://doi.org/10.3390/aerospace9080437 - 10 Aug 2022
Cited by 18 | Viewed by 3896
Abstract
Identifying safety anomalies and vulnerabilities in the aviation domain is a very expensive and time-consuming task. Currently, it is accomplished via manual forensic reviews by subject matter experts (SMEs). However, with the increase in the amount of data produced in airspace operations, relying [...] Read more.
Identifying safety anomalies and vulnerabilities in the aviation domain is a very expensive and time-consuming task. Currently, it is accomplished via manual forensic reviews by subject matter experts (SMEs). However, with the increase in the amount of data produced in airspace operations, relying on such manual reviews is impractical. Automated approaches, such as exceedance detection, have been deployed to flag safety events which surpass a pre-defined safety threshold. These approaches, however, completely rely on domain knowledge and outcome of the SMEs’ reviews and can only identify purely threshold crossings safety vulnerabilities. Unsupervised and supervised machine learning approaches have been developed in the past to automate the process of anomaly detection and vulnerability discovery in the aviation data, with availability of the labeled data being their differentiator. Purely unsupervised approaches can be prone to high false alarm rates, while a completely supervised approach might not reach optimal performance and generalize well when the size of labeled data is small. This is one of the fundamental challenges in the aviation domain, where the process of obtaining safety labels for the data requires significant time and effort from SMEs and cannot be crowd-sourced to citizen scientists. As a result, the size of properly labeled and reviewed data is often very small in aviation safety and supervised approaches fall short of the optimum performance with such data. In this paper, we develop a Robust and Explainable Semi-supervised deep learning model for Anomaly Detection (RESAD) in aviation data. This approach takes advantage of both majority unlabeled and minority labeled data sets. We develop a case study of multi-class anomaly detection in the approach to landing of commercial aircraft in order to benchmark RESAD’s performance to baseline methods. Furthermore, we develop an optimization scheme where the model is optimized to not only reach maximum accuracy, but also a desired interpretability and robustness to adversarial perturbations. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

19 pages, 925 KiB  
Article
Unsupervised Anomaly Detection in Flight Data Using Convolutional Variational Auto-Encoder
by Milad Memarzadeh, Bryan Matthews and Ilya Avrekh
Aerospace 2020, 7(8), 115; https://doi.org/10.3390/aerospace7080115 - 8 Aug 2020
Cited by 84 | Viewed by 13043
Abstract
The modern National Airspace System (NAS) is an extremely safe system and the aviation industry has experienced a steady decrease in fatalities over the years. This is in part due the airlines, manufacturers, FAA, and research institutions all continually working to improve the [...] Read more.
The modern National Airspace System (NAS) is an extremely safe system and the aviation industry has experienced a steady decrease in fatalities over the years. This is in part due the airlines, manufacturers, FAA, and research institutions all continually working to improve the safety of the operations. However, the current approach for identifying vulnerabilities in NAS operations leverages domain expertise using knowledge about how the system should behave within the expected tolerances to known safety margins. This approach works well when the system has a well-defined operating condition. However, the operations in the NAS can be highly complex with various nuances that render it difficult to assess risk based on pre-defined safety vulnerabilities. Moreover, state-of-the-art machine learning models that are developed for event detection in aerospace data usually rely on supervised learning. However, in many real-world problems, such as flight safety, creating labels for the data requires specialized expertise that is time consuming and therefore largely impractical. To address this challenge, we develop a Convolutional Variational Auto-Encoder (CVAE), an unsupervised deep generative model for anomaly detection in high-dimensional time-series data. Validating on Yahoo’s benchmark data as well as a case study of identifying anomalies in commercial flights’ take-offs, we show that CVAE outperforms both classic and deep learning-based approaches in precision and recall of detecting anomalies. Full article
(This article belongs to the Special Issue Machine Learning Applications in Aviation Safety)
Show Figures

Figure 1

Back to TopTop