Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Authors = Maxwell J. D. Ramstead

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 318 KiB  
Article
Shared Protentions in Multi-Agent Active Inference
by Mahault Albarracin, Riddhi J. Pitliya, Toby St. Clere Smithe, Daniel Ari Friedman, Karl Friston and Maxwell J. D. Ramstead
Entropy 2024, 26(4), 303; https://doi.org/10.3390/e26040303 - 29 Mar 2024
Cited by 5 | Viewed by 7602
Abstract
In this paper, we unite concepts from Husserlian phenomenology, the active inference framework in theoretical biology, and category theory in mathematics to develop a comprehensive framework for understanding social action premised on shared goals. We begin with an overview of Husserlian phenomenology, focusing [...] Read more.
In this paper, we unite concepts from Husserlian phenomenology, the active inference framework in theoretical biology, and category theory in mathematics to develop a comprehensive framework for understanding social action premised on shared goals. We begin with an overview of Husserlian phenomenology, focusing on aspects of inner time-consciousness, namely, retention, primal impression, and protention. We then review active inference as a formal approach to modeling agent behavior based on variational (approximate Bayesian) inference. Expanding upon Husserl’s model of time consciousness, we consider collective goal-directed behavior, emphasizing shared protentions among agents and their connection to the shared generative models of active inference. This integrated framework aims to formalize shared goals in terms of shared protentions, and thereby shed light on the emergence of group intentionality. Building on this foundation, we incorporate mathematical tools from category theory, in particular, sheaf and topos theory, to furnish a mathematical image of individual and group interactions within a stochastic environment. Specifically, we employ morphisms between polynomial representations of individual agent models, allowing predictions not only of their own behaviors but also those of other agents and environmental responses. Sheaf and topos theory facilitates the construction of coherent agent worldviews and provides a way of representing consensus or shared understanding. We explore the emergence of shared protentions, bridging the phenomenology of temporal structure, multi-agent active inference systems, and category theory. Shared protentions are highlighted as pivotal for coordination and achieving common objectives. We conclude by acknowledging the intricacies stemming from stochastic systems and uncertainties in realizing shared goals. Full article
7 pages, 589 KiB  
Editorial
Applying the Free Energy Principle to Complex Adaptive Systems
by Paul B. Badcock, Maxwell J. D. Ramstead, Zahra Sheikhbahaee and Axel Constant
Entropy 2022, 24(5), 689; https://doi.org/10.3390/e24050689 - 13 May 2022
Cited by 9 | Viewed by 4652
Abstract
The free energy principle (FEP) is a formulation of the adaptive, belief-driven behaviour of self-organizing systems that gained prominence in the early 2000s as a unified model of the brain [...] Full article
(This article belongs to the Special Issue Applying the Free-Energy Principle to Complex Adaptive Systems)
Show Figures

Figure 1

49 pages, 2338 KiB  
Article
Epistemic Communities under Active Inference
by Mahault Albarracin, Daphne Demekas, Maxwell J. D. Ramstead and Conor Heins
Entropy 2022, 24(4), 476; https://doi.org/10.3390/e24040476 - 29 Mar 2022
Cited by 34 | Viewed by 9010
Abstract
The spread of ideas is a fundamental concern of today’s news ecology. Understanding the dynamics of the spread of information and its co-option by interested parties is of critical importance. Research on this topic has shown that individuals tend to cluster in echo-chambers [...] Read more.
The spread of ideas is a fundamental concern of today’s news ecology. Understanding the dynamics of the spread of information and its co-option by interested parties is of critical importance. Research on this topic has shown that individuals tend to cluster in echo-chambers and are driven by confirmation bias. In this paper, we leverage the active inference framework to provide an in silico model of confirmation bias and its effect on echo-chamber formation. We build a model based on active inference, where agents tend to sample information in order to justify their own view of reality, which eventually leads to them to have a high degree of certainty about their own beliefs. We show that, once agents have reached a certain level of certainty about their beliefs, it becomes very difficult to get them to change their views. This system of self-confirming beliefs is upheld and reinforced by the evolving relationship between an agent’s beliefs and observations, which over time will continue to provide evidence for their ingrained ideas about the world. The epistemic communities that are consolidated by these shared beliefs, in turn, tend to produce perceptions of reality that reinforce those shared beliefs. We provide an active inference account of this community formation mechanism. We postulate that agents are driven by the epistemic value that they obtain from sampling or observing the behaviours of other agents. Inspired by digital social networks like Twitter, we build a generative model in which agents generate observable social claims or posts (e.g., ‘tweets’) while reading the socially observable claims of other agents that lend support to one of two mutually exclusive abstract topics. Agents can choose which other agent they pay attention to at each timestep, and crucially who they attend to and what they choose to read influences their beliefs about the world. Agents also assess their local network’s perspective, influencing which kinds of posts they expect to see other agents making. The model was built and simulated using the freely available Python package pymdp. The proposed active inference model can reproduce the formation of echo-chambers over social networks, and gives us insight into the cognitive processes that lead to this phenomenon. Full article
Show Figures

Figure 1

23 pages, 4261 KiB  
Article
Memory and Markov Blankets
by Thomas Parr, Lancelot Da Costa, Conor Heins, Maxwell James D. Ramstead and Karl J. Friston
Entropy 2021, 23(9), 1105; https://doi.org/10.3390/e23091105 - 25 Aug 2021
Cited by 43 | Viewed by 5712
Abstract
In theoretical biology, we are often interested in random dynamical systems—like the brain—that appear to model their environments. This can be formalized by appealing to the existence of a (possibly non-equilibrium) steady state, whose density preserves a conditional independence between a biological entity [...] Read more.
In theoretical biology, we are often interested in random dynamical systems—like the brain—that appear to model their environments. This can be formalized by appealing to the existence of a (possibly non-equilibrium) steady state, whose density preserves a conditional independence between a biological entity and its surroundings. From this perspective, the conditioning set, or Markov blanket, induces a form of vicarious synchrony between creature and world—as if one were modelling the other. However, this results in an apparent paradox. If all conditional dependencies between a system and its surroundings depend upon the blanket, how do we account for the mnemonic capacity of living systems? It might appear that any shared dependence upon past blanket states violates the independence condition, as the variables on either side of the blanket now share information not available from the current blanket state. This paper aims to resolve this paradox, and to demonstrate that conditional independence does not preclude memory. Our argument rests upon drawing a distinction between the dependencies implied by a steady state density, and the density dynamics of the system conditioned upon its configuration at a previous time. The interesting question then becomes: What determines the length of time required for a stochastic system to ‘forget’ its initial conditions? We explore this question for an example system, whose steady state density possesses a Markov blanket, through simple numerical analyses. We conclude with a discussion of the relevance for memory in cognitive systems like us. Full article
Show Figures

Figure 1

29 pages, 1823 KiB  
Article
Is the Free-Energy Principle a Formal Theory of Semantics? From Variational Density Dynamics to Neural and Phenotypic Representations
by Maxwell J. D. Ramstead, Karl J. Friston and Inês Hipólito
Entropy 2020, 22(8), 889; https://doi.org/10.3390/e22080889 - 13 Aug 2020
Cited by 88 | Viewed by 12542
Abstract
The aim of this paper is twofold: (1) to assess whether the construct of neural representations plays an explanatory role under the variational free-energy principle and its corollary process theory, active inference; and (2) if so, to assess which philosophical stance—in relation to [...] Read more.
The aim of this paper is twofold: (1) to assess whether the construct of neural representations plays an explanatory role under the variational free-energy principle and its corollary process theory, active inference; and (2) if so, to assess which philosophical stance—in relation to the ontological and epistemological status of representations—is most appropriate. We focus on non-realist (deflationary and fictionalist-instrumentalist) approaches. We consider a deflationary account of mental representation, according to which the explanatorily relevant contents of neural representations are mathematical, rather than cognitive, and a fictionalist or instrumentalist account, according to which representations are scientifically useful fictions that serve explanatory (and other) aims. After reviewing the free-energy principle and active inference, we argue that the model of adaptive phenotypes under the free-energy principle can be used to furnish a formal semantics, enabling us to assign semantic content to specific phenotypic states (the internal states of a Markovian system that exists far from equilibrium). We propose a modified fictionalist account—an organism-centered fictionalism or instrumentalism. We argue that, under the free-energy principle, pursuing even a deflationary account of the content of neural representations licenses the appeal to the kind of semantic content involved in the ‘aboutness’ or intentionality of cognitive systems; our position is thus coherent with, but rests on distinct assumptions from, the realist position. We argue that the free-energy principle thereby explains the aboutness or intentionality in living systems and hence their capacity to parse their sensory stream using an ontology or set of semantic factors. Full article
Show Figures

Figure 1

Back to TopTop