Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Authors = Lyghia M. A. Meirelles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4240 KiB  
Article
Biocomposite for Prolonged Release of Water-Soluble Drugs
by Lyghia M. A. Meirelles, Raquel de Melo Barbosa, Renato Ferreira de Almeida Júnior, Paula Renata Lima Machado, Luana Perioli, César Viseras and Fernanda Nervo Raffin
Pharmaceutics 2023, 15(6), 1722; https://doi.org/10.3390/pharmaceutics15061722 - 14 Jun 2023
Cited by 3 | Viewed by 1879
Abstract
This study aimed to develop a prolonged-release system based on palygorskite and chitosan, which are natural ingredients widely available, affordable, and accessible. The chosen model drug was ethambutol (ETB), a tuberculostatic drug with high aqueous solubility and hygroscopicity, which is incompatible with other [...] Read more.
This study aimed to develop a prolonged-release system based on palygorskite and chitosan, which are natural ingredients widely available, affordable, and accessible. The chosen model drug was ethambutol (ETB), a tuberculostatic drug with high aqueous solubility and hygroscopicity, which is incompatible with other drugs used in tuberculosis therapy. The composites loaded with ETB were obtained using different proportions of palygorskite and chitosan through the spray drying technique. The main physicochemical properties of the microparticles were determined using XRD, FTIR, thermal analysis, and SEM. Additionally, the release profile and biocompatibility of the microparticles were evaluated. As a result, the chitosan–palygorskite composites loaded with the model drug appeared as spherical microparticles. The drug underwent amorphization within the microparticles, with an encapsulation efficiency greater than 84%. Furthermore, the microparticles exhibited prolonged release, particularly after the addition of palygorskite. They demonstrated biocompatibility in an in vitro model, and their release profile was influenced by the proportion of inputs in the formulation. Therefore, incorporating ETB into this system offers improved stability for the administered product in the initial tuberculosis pharmacotherapy dose, minimizing its contact with other tuberculostatic agents in the treatment, as well as reducing its hygroscopicity. Full article
(This article belongs to the Special Issue Application of Clay Minerals for Drug Delivery)
Show Figures

Figure 1

23 pages, 1095 KiB  
Review
Production Technologies, Regulatory Parameters, and Quality Control of Vaccine Vectors for Veterinary Use
by Raquel de M. Barbosa, Amélia M. Silva, Classius F. da Silva, Juliana C. Cardoso, Patricia Severino, Lyghia M. A. Meirelles, Arnobio A. da Silva-Junior, César Viseras, Joel Fonseca and Eliana B. Souto
Technologies 2022, 10(5), 109; https://doi.org/10.3390/technologies10050109 - 21 Oct 2022
Cited by 4 | Viewed by 8082
Abstract
This paper presents a comprehensive review of the main types of vaccines approaching production technology, regulatory parameters, and the quality control of vaccines. Bioinformatic tools and computational strategies have been used in the research and development of new pharmaceutical products, reducing the time [...] Read more.
This paper presents a comprehensive review of the main types of vaccines approaching production technology, regulatory parameters, and the quality control of vaccines. Bioinformatic tools and computational strategies have been used in the research and development of new pharmaceutical products, reducing the time between supposed pharmaceutical product candidates (R&D steps) and final products (to be marketed). In fact, in the reverse vaccinology field, in silico studies can be very useful in identifying possible vaccine targets from databases. In addition, in some cases (subunit or RNA/ DNA vaccines), the in silico approach permits: (I) the evaluation of protein immunogenicity through the prediction of epitopes, (II) the potential adverse effects of antigens through the projection of similarity to host proteins, (III) toxicity and (IV) allergenicity, contributing to obtaining safe, effective, stable, and economical vaccines for existing and emerging infectious pathogens. Additionally, the rapid growth of emerging infectious diseases in recent years should be considered a driving force for developing and implementing new vaccines and reassessing vaccine schedules in companion animals, food animals, and wildlife disease control. Comprehensive and well-planned vaccination schedules are effective strategies to prevent and treat infectious diseases. Full article
(This article belongs to the Special Issue 10th Anniversary of Technologies—Recent Advances and Perspectives)
Show Figures

Figure 1

15 pages, 3170 KiB  
Article
Development and Characterization of Aloe vera Mucilaginous-Based Hydrogels for Psoriasis Treatment
by Silvana T. L. Jales, Raquel de M. Barbosa, André C. de Albuquerque, Luan H. V. Duarte, Girliane R. da Silva, Lyghia M. A. Meirelles, Tania M. S. da Silva, Adriano F. Alves, César Viseras, Fernanda N. Raffin and Tulio F. A. de L. Moura
J. Compos. Sci. 2022, 6(8), 231; https://doi.org/10.3390/jcs6080231 - 6 Aug 2022
Cited by 25 | Viewed by 7418
Abstract
The Aloe vera (L.) Burman f. pulp extract (AE), obtained from the inner parts of Aloe vera leaves, is rich in polysaccharides, including glucomannans, acemannans, pectic compounds, cellulose, and hemicelluloses; acemannan and glucomannan are considered the two main components responsible for most of [...] Read more.
The Aloe vera (L.) Burman f. pulp extract (AE), obtained from the inner parts of Aloe vera leaves, is rich in polysaccharides, including glucomannans, acemannans, pectic compounds, cellulose, and hemicelluloses; acemannan and glucomannan are considered the two main components responsible for most of the plant’s therapeutical properties. Besides having anti-inflammatory activity, these polysaccharides accelerate wound healing and promote skin regeneration, thus they can be utilized in healing products. The objective of this study was to develop Aloe vera mucilaginous-based hydrogels for topical use in psoriasis treatment. The hydrogels were prepared with 80% w/w of A. vera mucilaginous gel, evaluating two distinct polymers as the gelling agent: 1% carbopol 940 (FC1 and FC2) or 2% hydroxyethylcellulose (FH3 and FH4). FC1, FC2, FH3 and FH4 were evaluated for their organoleptic characteristics, rheological properties, pH and glucomannan content. Polysaccharide fractions (PFs) were extracted from the AE and used as a group of chemical markers and characterized by infrared (IR) spectroscopy and 1H nuclear magnetic resonance (1H NMR). The quantification of these markers in the raw material (AE) and in the hydrogels was carried out using spectrophotometric techniques in the UV-VIS region. The hydrogels-based hydroxyethylcellulose (FH3 and FH4) had glucomannan contents of 6.76 and 4.01 mg/g, respectively. Formulations with carbopol, FC1 and FC2, had glucomannan contents of 8.69 and 9.17 mg/g, respectively, an ideal pH for application on psoriasis, in addition to good spreadability and pseudoplastic and thixotropic behavior. Considering these results, hydrogel FC1 was evaluated for its keratolytic activity in a murine model of hyperkeratinization. For that, 0.5 mL of test formulations FC1 and FPC (0.05% clobetasol propionate cream) were topically applied to the proximal region of adult rats daily for 13 days. After euthanasia, approximately 2.5 cm of the proximal portion of each animal’s tail was cut and placed in 10% buffered formalin. Then, each tail fragment was processed and stained with hematoxylin and eosin (HE), and the results obtained from the histological sections indicated a 61% reduction in stratum corneum for animals treated with the A. vera hydrogel (FC1G) and 66% for animals treated with clobetasol propionate (PCG), compared to the group of animals that did not receive treatment (WTG). This study led to the conclusion that compared to the classic treatment (clobetasol propionate), the 80% A. vera hydrogel showed no significant difference, being effective in controlling hyperkeratinization. Full article
(This article belongs to the Special Issue Hydrogel and Biomaterials)
Show Figures

Figure 1

Back to TopTop