Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Authors = Loredana Filomena Ciarmiello ORCID = 0000-0002-4420-019X

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2917 KiB  
Article
Effect of Salinity Stress on Physiological Changes in Winter and Spring Wheat
by Muhammad Sohail Saddiq, Shahid Iqbal, Muhammad Bilal Hafeez, Amir M. H. Ibrahim, Ali Raza, Esha Mehik Fatima, Heer Baloch, Jahanzaib, Pasqualina Woodrow and Loredana Filomena Ciarmiello
Agronomy 2021, 11(6), 1193; https://doi.org/10.3390/agronomy11061193 - 11 Jun 2021
Cited by 177 | Viewed by 14696
Abstract
Salinity is a leading threat to crop growth throughout the world. Salt stress induces altered physiological processes and several inhibitory effects on the growth of cereals, including wheat (Triticum aestivum L.). In this study, we determined the effects of salinity on five [...] Read more.
Salinity is a leading threat to crop growth throughout the world. Salt stress induces altered physiological processes and several inhibitory effects on the growth of cereals, including wheat (Triticum aestivum L.). In this study, we determined the effects of salinity on five spring and five winter wheat genotypes seedlings. We evaluated the salt stress on root and shoot growth attributes, i.e., root length (RL), shoot length (SL), the relative growth rate of root length (RGR-RL), and shoot length (RGR-SL). The ionic content of the leaves was also measured. Physiological traits were also assessed, including stomatal conductance (gs), chlorophyll content index (CCI), and light-adapted leaf chlorophyll fluorescence, i.e., the quantum yield of photosystem II (Fv/Fm′) and instantaneous chlorophyll fluorescence (Ft). Physiological and growth performance under salt stress (0, 100, and 200 mol/L) were explored at the seedling stage. The analysis showed that spring wheat accumulated low Na+ and high K+ in leaf blades compared with winter wheat. Among the genotypes, Sakha 8, S-24, W4909, and W4910 performed better and had improved physiological attributes (gs, Fv/Fm′, and Ft) and seedling growth traits (RL, SL, RGR-SL, and RGR-RL), which were strongly linked with proper Na+ and K+ discrimination in leaves and the CCI in leaves. The identified genotypes could represent valuable resources for genetic improvement programs to provide a greater understanding of plant tolerance to salt stress. Full article
(This article belongs to the Collection Crop Physiology and Stress)
Show Figures

Figure 1

13 pages, 1382 KiB  
Article
An HPLC-automated Derivatization for Glutathione and Related Thiols Analysis in Brassica rapa L.
by Francesco Nacca, Concetta Cozzolino, Petronia Carillo, Pasqualina Woodrow, Amodio Fuggi and Loredana Filomena Ciarmiello
Agronomy 2021, 11(6), 1157; https://doi.org/10.3390/agronomy11061157 - 5 Jun 2021
Cited by 6 | Viewed by 3245
Abstract
The high content of glucosinolates and glutathione makes the Brassicaceae an important healthy food. Thiols and especially glutathione and γ-Glu-Cys-Gly tripeptide are involved in many fundamental cellular functions such as oxidative stress protection. Although several methods for sulphur compounds analysis in biological samples [...] Read more.
The high content of glucosinolates and glutathione makes the Brassicaceae an important healthy food. Thiols and especially glutathione and γ-Glu-Cys-Gly tripeptide are involved in many fundamental cellular functions such as oxidative stress protection. Although several methods for sulphur compounds analysis in biological samples are actually used, the determination of glutathione and other sulphur derivatives in plant tissues is rather problematic due to their extreme susceptibility to oxidation, which can lead to their overestimation. The aim of this work was the improvement and validation of an automated method for determination of reduced and oxidised glutathione, cysteine and γ-glutamylcysteine in plant tissues. The method consists of a fully automated pre-column derivatization of thiols based on monobromobimane reagent, a high-performance liquid chromatography derivatives separation, and a fluorimetric detection and quantification. The method was successfully applied for determination of the oxidized and reduced forms of Cys, γ-GC and GSH content in leaves, petioles, inflorescences and roots of Brassica rapa L. subsp. Sylvestris. At harvest, in freshly cut plants, the average contents of GSH/2GSSG were 840/45, 345/70 and 150/70 nmol g−1 FW for the florets, leaf blades and stems, respectively; those of Cys/2Cys were 80/12, 29/12 and 24/6 nmol g-1 FW; while those of γ-GC/γ-GCCG-γ were 8.0/4.0, and 6.0/3.0, 3.0/2.0 nmol g−1 FW, respectively. Such amounts were lower in low-sulphur-grown plants at harvest. The very low coefficient of variation between repeated tests (maximum 1.6%), the high recovery of internal standard (>96%) and the linear correlation coefficient of the calibration (R2 > 0.99) support the efficiency of this method that allowed analysing about 50 samples/die in a totally automated manner with no operator intervention. Our results show that the reported method integrations can significantly improve thiols detection via HPLC. Full article
Show Figures

Figure 1

22 pages, 2625 KiB  
Article
Ascophyllum nodosum Based Extracts Counteract Salinity Stress in Tomato by Remodeling Leaf Nitrogen Metabolism
by Emilia Dell’Aversana, Valerio Cirillo, Michael James Van Oosten, Emilio Di Stasio, Katya Saiano, Pasqualina Woodrow, Loredana Filomena Ciarmiello, Albino Maggio and Petronia Carillo
Plants 2021, 10(6), 1044; https://doi.org/10.3390/plants10061044 - 21 May 2021
Cited by 24 | Viewed by 4351
Abstract
Biostimulants have rapidly and widely been adopted as growth enhancers and stress protectants in agriculture, however, due to the complex nature of these products, their mechanism of action is not clearly understood. By using two algal based commercial biostimulants in combination with the [...] Read more.
Biostimulants have rapidly and widely been adopted as growth enhancers and stress protectants in agriculture, however, due to the complex nature of these products, their mechanism of action is not clearly understood. By using two algal based commercial biostimulants in combination with the Solanum lycopersicum cv. MicroTom model system, we assessed how the modulation of nitrogen metabolites and potassium levels could contribute to mediate physiological mechanisms that are known to occur in response to salt/and or osmotic stress. Here we provide evidence that the reshaping of amino acid metabolism can work as a functional effector, coordinating ion homeostasis, osmotic adjustment and scavenging of reactive oxygen species under increased osmotic stress in MicroTom plant cells. The Superfifty biostimulant is responsible for a minor amino acid rich-phenotype and could represent an interesting instrument to untangle nitrogen metabolism dynamics in response to salinity and/or osmotic stress. Full article
Show Figures

Graphical abstract

Back to TopTop