Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Authors = Kevin Dzobo

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 3903 KiB  
Review
The Extracellular Matrix: Its Composition, Function, Remodeling, and Role in Tumorigenesis
by Kevin Dzobo and Collet Dandara
Biomimetics 2023, 8(2), 146; https://doi.org/10.3390/biomimetics8020146 - 5 Apr 2023
Cited by 101 | Viewed by 20759
Abstract
The extracellular matrix (ECM) is a ubiquitous member of the body and is key to the maintenance of tissue and organ integrity. Initially thought to be a bystander in many cellular processes, the extracellular matrix has been shown to have diverse components that [...] Read more.
The extracellular matrix (ECM) is a ubiquitous member of the body and is key to the maintenance of tissue and organ integrity. Initially thought to be a bystander in many cellular processes, the extracellular matrix has been shown to have diverse components that regulate and activate many cellular processes and ultimately influence cell phenotype. Importantly, the ECM’s composition, architecture, and stiffness/elasticity influence cellular phenotypes. Under normal conditions and during development, the synthesized ECM constantly undergoes degradation and remodeling processes via the action of matrix proteases that maintain tissue homeostasis. In many pathological conditions including fibrosis and cancer, ECM synthesis, remodeling, and degradation is dysregulated, causing its integrity to be altered. Both physical and chemical cues from the ECM are sensed via receptors including integrins and play key roles in driving cellular proliferation and differentiation and in the progression of various diseases such as cancers. Advances in ‘omics’ technologies have seen an increase in studies focusing on bidirectional cell–matrix interactions, and here, we highlight the emerging knowledge on the role played by the ECM during normal development and in pathological conditions. This review summarizes current ECM-targeted therapies that can modify ECM tumors to overcome drug resistance and better cancer treatment. Full article
(This article belongs to the Special Issue Biomimicry and 3D Printing of Living Materials)
Show Figures

Figure 1

25 pages, 1780 KiB  
Review
The Tumor Microenvironment in Tumorigenesis and Therapy Resistance Revisited
by Kevin Dzobo, Dimakatso A. Senthebane and Collet Dandara
Cancers 2023, 15(2), 376; https://doi.org/10.3390/cancers15020376 - 6 Jan 2023
Cited by 90 | Viewed by 12857
Abstract
Tumorigenesis is a complex and dynamic process involving cell-cell and cell-extracellular matrix (ECM) interactions that allow tumor cell growth, drug resistance and metastasis. This review provides an updated summary of the role played by the tumor microenvironment (TME) components and hypoxia in tumorigenesis, [...] Read more.
Tumorigenesis is a complex and dynamic process involving cell-cell and cell-extracellular matrix (ECM) interactions that allow tumor cell growth, drug resistance and metastasis. This review provides an updated summary of the role played by the tumor microenvironment (TME) components and hypoxia in tumorigenesis, and highlight various ways through which tumor cells reprogram normal cells into phenotypes that are pro-tumorigenic, including cancer associated- fibroblasts, -macrophages and -endothelial cells. Tumor cells secrete numerous factors leading to the transformation of a previously anti-tumorigenic environment into a pro-tumorigenic environment. Once formed, solid tumors continue to interact with various stromal cells, including local and infiltrating fibroblasts, macrophages, mesenchymal stem cells, endothelial cells, pericytes, and secreted factors and the ECM within the tumor microenvironment (TME). The TME is key to tumorigenesis, drug response and treatment outcome. Importantly, stromal cells and secreted factors can initially be anti-tumorigenic, but over time promote tumorigenesis and induce therapy resistance. To counter hypoxia, increased angiogenesis leads to the formation of new vascular networks in order to actively promote and sustain tumor growth via the supply of oxygen and nutrients, whilst removing metabolic waste. Angiogenic vascular network formation aid in tumor cell metastatic dissemination. Successful tumor treatment and novel drug development require the identification and therapeutic targeting of pro-tumorigenic components of the TME including cancer-associated- fibroblasts (CAFs) and -macrophages (CAMs), hypoxia, blocking ECM-receptor interactions, in addition to the targeting of tumor cells. The reprogramming of stromal cells and the immune response to be anti-tumorigenic is key to therapeutic success. Lastly, this review highlights potential TME- and hypoxia-centered therapies under investigation. Full article
Show Figures

Graphical abstract

38 pages, 1429 KiB  
Review
Advances in Therapeutic Targeting of Cancer Stem Cells within the Tumor Microenvironment: An Updated Review
by Kevin Dzobo, Dimakatso Alice Senthebane, Chelene Ganz, Nicholas Ekow Thomford, Ambroise Wonkam and Collet Dandara
Cells 2020, 9(8), 1896; https://doi.org/10.3390/cells9081896 - 13 Aug 2020
Cited by 95 | Viewed by 24759
Abstract
Despite great strides being achieved in improving cancer patients’ outcomes through better therapies and combinatorial treatment, several hurdles still remain due to therapy resistance, cancer recurrence and metastasis. Drug resistance culminating in relapse continues to be associated with fatal disease. The cancer stem [...] Read more.
Despite great strides being achieved in improving cancer patients’ outcomes through better therapies and combinatorial treatment, several hurdles still remain due to therapy resistance, cancer recurrence and metastasis. Drug resistance culminating in relapse continues to be associated with fatal disease. The cancer stem cell theory posits that tumors are driven by specialized cancer cells called cancer stem cells (CSCs). CSCs are a subpopulation of cancer cells known to be resistant to therapy and cause metastasis. Whilst the debate on whether CSCs are the origins of the primary tumor rages on, CSCs have been further characterized in many cancers with data illustrating that CSCs display great abilities to self-renew, resist therapies due to enhanced epithelial to mesenchymal (EMT) properties, enhanced expression of ATP-binding cassette (ABC) membrane transporters, activation of several survival signaling pathways and increased immune evasion as well as DNA repair mechanisms. CSCs also display great heterogeneity with the consequential lack of specific CSC markers presenting a great challenge to their targeting. In this updated review we revisit CSCs within the tumor microenvironment (TME) and present novel treatment strategies targeting CSCs. These promising strategies include targeting CSCs-specific properties using small molecule inhibitors, immunotherapy, microRNA mediated inhibitors, epigenetic methods as well as targeting CSC niche-microenvironmental factors and differentiation. Lastly, we present recent clinical trials undertaken to try to turn the tide against cancer by targeting CSC-associated drug resistance and metastasis. Full article
(This article belongs to the Section Stem Cells)
Show Figures

Graphical abstract

30 pages, 6176 KiB  
Article
Interleukin-6 Induces Myogenic Differentiation via JAK2-STAT3 Signaling in Mouse C2C12 Myoblast Cell Line and Primary Human Myoblasts
by Paul J. Steyn, Kevin Dzobo, Robert I. Smith and Kathryn H. Myburgh
Int. J. Mol. Sci. 2019, 20(21), 5273; https://doi.org/10.3390/ijms20215273 - 24 Oct 2019
Cited by 66 | Viewed by 9677
Abstract
Postnatal muscle growth and exercise- or injury-induced regeneration are facilitated by myoblasts. Myoblasts respond to a variety of proteins such as cytokines that activate various signaling cascades. Cytokines belonging to the interleukin 6 superfamily (IL-6) influence myoblasts’ proliferation but their effect on differentiation [...] Read more.
Postnatal muscle growth and exercise- or injury-induced regeneration are facilitated by myoblasts. Myoblasts respond to a variety of proteins such as cytokines that activate various signaling cascades. Cytokines belonging to the interleukin 6 superfamily (IL-6) influence myoblasts’ proliferation but their effect on differentiation is still being researched. The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway is one of the key signaling pathways identified to be activated by IL-6. The aim of this study was to investigate myoblast fate as well as activation of JAK-STAT pathway at different physiologically relevant IL-6 concentrations (10 pg/mL; 100 pg/mL; 10 ng/mL) in the C2C12 mouse myoblast cell line and primary human myoblasts, isolated from eight young healthy male volunteers. Myoblasts’ cell cycle progression, proliferation and differentiation in vitro were assessed. Low IL-6 concentrations facilitated cell cycle transition from the quiescence/Gap1 (G0/G1) to the synthesis (S-) phases. Low and medium IL-6 concentrations decreased the expression of myoblast determination protein 1 (MyoD) and myogenin and increased proliferating cell nuclear antigen (PCNA) expression. In contrast, high IL-6 concentration shifted a larger proportion of cells to the pro-differentiation G0/G1 phase of the cell cycle, substantiated by significant increases of both MyoD and myogenin expression and decreased PCNA expression. Low IL-6 concentration was responsible for prolonged JAK1 activation and increased suppressor of cytokine signaling 1 (SOCS1) protein expression. JAK-STAT inhibition abrogated IL-6-mediated C2C12 cell proliferation. In contrast, high IL-6 initially increased JAK1 activation but resulted in prolonged JAK2 activation and elevated SOCS3 protein expression. High IL-6 concentration decreased interleukin-6 receptor (IL-6R) expression 24 h after treatment whilst low IL-6 concentration increased IL-6 receptor (IL-6R) expression at the same time point. In conclusion, this study demonstrated that IL-6 has concentration- and time-dependent effects on both C2C12 mouse myoblasts and primary human myoblasts. Low IL-6 concentration induces proliferation whilst high IL-6 concentration induces differentiation. These effects are mediated by specific components of the JAK/STAT/SOCS pathway. Full article
(This article belongs to the Special Issue The Interleukins in Health and Disease 2019)
Show Figures

Figure 1

28 pages, 2317 KiB  
Review
Recent Trends in Decellularized Extracellular Matrix Bioinks for 3D Printing: An Updated Review
by Kevin Dzobo, Keolebogile Shirley Caroline M. Motaung and Adetola Adesida
Int. J. Mol. Sci. 2019, 20(18), 4628; https://doi.org/10.3390/ijms20184628 - 18 Sep 2019
Cited by 185 | Viewed by 13296
Abstract
The promise of regenerative medicine and tissue engineering is founded on the ability to regenerate diseased or damaged tissues and organs into functional tissues and organs or the creation of new tissues and organs altogether. In theory, damaged and diseased tissues and organs [...] Read more.
The promise of regenerative medicine and tissue engineering is founded on the ability to regenerate diseased or damaged tissues and organs into functional tissues and organs or the creation of new tissues and organs altogether. In theory, damaged and diseased tissues and organs can be regenerated or created using different configurations and combinations of extracellular matrix (ECM), cells, and inductive biomolecules. Regenerative medicine and tissue engineering can allow the improvement of patients’ quality of life through availing novel treatment options. The coupling of regenerative medicine and tissue engineering with 3D printing, big data, and computational algorithms is revolutionizing the treatment of patients in a huge way. 3D bioprinting allows the proper placement of cells and ECMs, allowing the recapitulation of native microenvironments of tissues and organs. 3D bioprinting utilizes different bioinks made up of different formulations of ECM/biomaterials, biomolecules, and even cells. The choice of the bioink used during 3D bioprinting is very important as properties such as printability, compatibility, and physical strength influence the final construct printed. The extracellular matrix (ECM) provides both physical and mechanical microenvironment needed by cells to survive and proliferate. Decellularized ECM bioink contains biochemical cues from the original native ECM and also the right proportions of ECM proteins. Different techniques and characterization methods are used to derive bioinks from several tissues and organs and to evaluate their quality. This review discusses the uses of decellularized ECM bioinks and argues that they represent the most biomimetic bioinks available. In addition, we briefly discuss some polymer-based bioinks utilized in 3D bioprinting. Full article
(This article belongs to the Special Issue Cell-Biomaterial Interaction 2019)
Show Figures

Figure 1

32 pages, 5779 KiB  
Article
The Role of Tumor Microenvironment in Chemoresistance: 3D Extracellular Matrices as Accomplices
by Dimakatso Alice Senthebane, Tina Jonker, Arielle Rowe, Nicholas Ekow Thomford, Daniella Munro, Collet Dandara, Ambroise Wonkam, Dhirendra Govender, Bridget Calder, Nelson C. Soares, Jonathan M. Blackburn, M. Iqbal Parker and Kevin Dzobo
Int. J. Mol. Sci. 2018, 19(10), 2861; https://doi.org/10.3390/ijms19102861 - 20 Sep 2018
Cited by 105 | Viewed by 7999
Abstract
Background: The functional interplay between tumor cells and their adjacent stroma has been suggested to play crucial roles in the initiation and progression of tumors and the effectiveness of chemotherapy. The extracellular matrix (ECM), a complex network of extracellular proteins, provides both physical [...] Read more.
Background: The functional interplay between tumor cells and their adjacent stroma has been suggested to play crucial roles in the initiation and progression of tumors and the effectiveness of chemotherapy. The extracellular matrix (ECM), a complex network of extracellular proteins, provides both physical and chemicals cues necessary for cell proliferation, survival, and migration. Understanding how ECM composition and biomechanical properties affect cancer progression and response to chemotherapeutic drugs is vital to the development of targeted treatments. Methods: 3D cell-derived-ECMs and esophageal cancer cell lines were used as a model to investigate the effect of ECM proteins on esophageal cancer cell lines response to chemotherapeutics. Immunohistochemical and qRT-PCR evaluation of ECM proteins and integrin gene expression was done on clinical esophageal squamous cell carcinoma biopsies. Esophageal cancer cell lines (WHCO1, WHCO5, WHCO6, KYSE180, KYSE 450 and KYSE 520) were cultured on decellularised ECMs (fibroblasts-derived ECM; cancer cell-derived ECM; combinatorial-ECM) and treated with 0.1% Dimethyl sulfoxide (DMSO), 4.2 µM cisplatin, 3.5 µM 5-fluorouracil and 2.5 µM epirubicin for 24 h. Cell proliferation, cell cycle progression, colony formation, apoptosis, migration and activation of signaling pathways were used as our study endpoints. Results: The expression of collagens, fibronectin and laminins was significantly increased in esophageal squamous cell carcinomas (ESCC) tumor samples compared to the corresponding normal tissue. Decellularised ECMs abrogated the effect of drugs on cancer cell cycling, proliferation and reduced drug induced apoptosis by 20–60% that of those plated on plastic. The mitogen-activated protein kinase-extracellular signal-regulated kinase (MEK-ERK) and phosphoinositide 3-kinase-protein kinase B (PI3K/Akt) signaling pathways were upregulated in the presence of the ECMs. Furthermore, our data show that concomitant addition of chemotherapeutic drugs and the use of collagen- and fibronectin-deficient ECMs through siRNA inhibition synergistically increased cancer cell sensitivity to drugs by 30–50%, and reduced colony formation and cancer cell migration. Conclusion: Our study shows that ECM proteins play a key role in the response of cancer cells to chemotherapy and suggest that targeting ECM proteins can be an effective therapeutic strategy against chemoresistant tumors. Full article
(This article belongs to the Special Issue Tumor Microenvironment 2019)
Show Figures

Figure 1

29 pages, 2234 KiB  
Review
Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery
by Nicholas Ekow Thomford, Dimakatso Alice Senthebane, Arielle Rowe, Daniella Munro, Palesa Seele, Alfred Maroyi and Kevin Dzobo
Int. J. Mol. Sci. 2018, 19(6), 1578; https://doi.org/10.3390/ijms19061578 - 25 May 2018
Cited by 973 | Viewed by 57734
Abstract
The therapeutic properties of plants have been recognised since time immemorial. Many pathological conditions have been treated using plant-derived medicines. These medicines are used as concoctions or concentrated plant extracts without isolation of active compounds. Modern medicine however, requires the isolation and purification [...] Read more.
The therapeutic properties of plants have been recognised since time immemorial. Many pathological conditions have been treated using plant-derived medicines. These medicines are used as concoctions or concentrated plant extracts without isolation of active compounds. Modern medicine however, requires the isolation and purification of one or two active compounds. There are however a lot of global health challenges with diseases such as cancer, degenerative diseases, HIV/AIDS and diabetes, of which modern medicine is struggling to provide cures. Many times the isolation of “active compound” has made the compound ineffective. Drug discovery is a multidimensional problem requiring several parameters of both natural and synthetic compounds such as safety, pharmacokinetics and efficacy to be evaluated during drug candidate selection. The advent of latest technologies that enhance drug design hypotheses such as Artificial Intelligence, the use of ‘organ-on chip’ and microfluidics technologies, means that automation has become part of drug discovery. This has resulted in increased speed in drug discovery and evaluation of the safety, pharmacokinetics and efficacy of candidate compounds whilst allowing novel ways of drug design and synthesis based on natural compounds. Recent advances in analytical and computational techniques have opened new avenues to process complex natural products and to use their structures to derive new and innovative drugs. Indeed, we are in the era of computational molecular design, as applied to natural products. Predictive computational softwares have contributed to the discovery of molecular targets of natural products and their derivatives. In future the use of quantum computing, computational softwares and databases in modelling molecular interactions and predicting features and parameters needed for drug development, such as pharmacokinetic and pharmacodynamics, will result in few false positive leads in drug development. This review discusses plant-based natural product drug discovery and how innovative technologies play a role in next-generation drug discovery. Full article
(This article belongs to the Special Issue Plant Natural Products for Human Health)
Show Figures

Graphical abstract

23 pages, 16200 KiB  
Article
Chemoresistance to Cancer Treatment: Benzo-α-Pyrene as Friend or Foe?
by Kevin Dzobo, Naseeha Hassen, Dimakatso Alice Senthebane, Nicholas Ekow Thomford, Arielle Rowe, Hendrina Shipanga, Ambroise Wonkam, M. Iqbal Parker, Shaheen Mowla and Collet Dandara
Molecules 2018, 23(4), 930; https://doi.org/10.3390/molecules23040930 - 17 Apr 2018
Cited by 16 | Viewed by 5747
Abstract
Background: Environmental pollution such as exposure to pro-carcinogens including benzo-α-pyrene is becoming a major problem globally. Moreover, the effects of benzo-α-pyrene (BaP) on drug pharmacokinetics, pharmacodynamics, and drug resistance warrant further investigation, especially in cancer outpatient chemotherapy where exposure to environmental pollutants might [...] Read more.
Background: Environmental pollution such as exposure to pro-carcinogens including benzo-α-pyrene is becoming a major problem globally. Moreover, the effects of benzo-α-pyrene (BaP) on drug pharmacokinetics, pharmacodynamics, and drug resistance warrant further investigation, especially in cancer outpatient chemotherapy where exposure to environmental pollutants might occur. Method: We report here on the effects of benzo-α-pyrene on esophageal cancer cells in vitro, alone, or in combination with chemotherapeutic drugs cisplatin, 5-flurouracil, or paclitaxel. As the study endpoints, we employed expression of proteins involved in cell proliferation, drug metabolism, apoptosis, cell cycle analysis, colony formation, migration, and signaling cascades in the WHCO1 esophageal cancer cell line after 24 h of treatment. Results: Benzo-α-pyrene had no significant effect on WHCO1 cancer cell proliferation but reversed the effect of chemotherapeutic drugs by reducing drug-induced cell death and apoptosis by 30–40% compared to drug-treated cells. The three drugs significantly reduced WHCO1 cell migration by 40–50% compared to control and BaP-treated cells. Combined exposure to drugs was associated with significantly increased apoptosis and reduced colony formation. Evaluation of survival signaling cascades showed that although the MEK-ERK and Akt pathways were activated in the presence of drugs, BaP was a stronger activator of the MEK-ERK and Akt pathways than the drugs. Conclusion: The present study suggest that BaP can reverse the effects of drugs on cancer cells via the activation of survival signaling pathways and upregulation of anti-apoptotic proteins such as Bcl-2 and Bcl-xL. Our data show that BaP contribute to the development of chemoresistant cancer cells. Full article
Show Figures

Figure 1

30 pages, 3385 KiB  
Review
The Role of Tumor Microenvironment in Chemoresistance: To Survive, Keep Your Enemies Closer
by Dimakatso Alice Senthebane, Arielle Rowe, Nicholas Ekow Thomford, Hendrina Shipanga, Daniella Munro, Mohammad A. M. Al Mazeedi, Hashim A. M. Almazyadi, Karlien Kallmeyer, Collet Dandara, Michael S. Pepper, M. Iqbal Parker and Kevin Dzobo
Int. J. Mol. Sci. 2017, 18(7), 1586; https://doi.org/10.3390/ijms18071586 - 21 Jul 2017
Cited by 336 | Viewed by 15505
Abstract
Chemoresistance is a leading cause of morbidity and mortality in cancer and it continues to be a challenge in cancer treatment. Chemoresistance is influenced by genetic and epigenetic alterations which affect drug uptake, metabolism and export of drugs at the cellular levels. While [...] Read more.
Chemoresistance is a leading cause of morbidity and mortality in cancer and it continues to be a challenge in cancer treatment. Chemoresistance is influenced by genetic and epigenetic alterations which affect drug uptake, metabolism and export of drugs at the cellular levels. While most research has focused on tumor cell autonomous mechanisms of chemoresistance, the tumor microenvironment has emerged as a key player in the development of chemoresistance and in malignant progression, thereby influencing the development of novel therapies in clinical oncology. It is not surprising that the study of the tumor microenvironment is now considered to be as important as the study of tumor cells. Recent advances in technological and analytical methods, especially ‘omics’ technologies, has made it possible to identify specific targets in tumor cells and within the tumor microenvironment to eradicate cancer. Tumors need constant support from previously ‘unsupportive’ microenvironments. Novel therapeutic strategies that inhibit such microenvironmental support to tumor cells would reduce chemoresistance and tumor relapse. Such strategies can target stromal cells, proteins released by stromal cells and non-cellular components such as the extracellular matrix (ECM) within the tumor microenvironment. Novel in vitro tumor biology models that recapitulate the in vivo tumor microenvironment such as multicellular tumor spheroids, biomimetic scaffolds and tumor organoids are being developed and are increasing our understanding of cancer cell-microenvironment interactions. This review offers an analysis of recent developments on the role of the tumor microenvironment in the development of chemoresistance and the strategies to overcome microenvironment-mediated chemoresistance. We propose a systematic analysis of the relationship between tumor cells and their respective tumor microenvironments and our data show that, to survive, cancer cells interact closely with tumor microenvironment components such as mesenchymal stem cells and the extracellular matrix. Full article
(This article belongs to the Special Issue Tumor Microenvironment)
Show Figures

Graphical abstract

20 pages, 4848 KiB  
Article
Fibroblast-Derived Extracellular Matrix Induces Chondrogenic Differentiation in Human Adipose-Derived Mesenchymal Stromal/Stem Cells in Vitro
by Kevin Dzobo, Taegyn Turnley, Andrew Wishart, Arielle Rowe, Karlien Kallmeyer, Fiona A. Van Vollenstee, Nicholas E. Thomford, Collet Dandara, Denis Chopera, Michael S. Pepper and M. Iqbal Parker
Int. J. Mol. Sci. 2016, 17(8), 1259; https://doi.org/10.3390/ijms17081259 - 3 Aug 2016
Cited by 51 | Viewed by 8279
Abstract
Mesenchymal stromal/stem cells (MSCs) represent an area being intensively researched for tissue engineering and regenerative medicine applications. MSCs may provide the opportunity to treat diseases and injuries that currently have limited therapeutic options, as well as enhance present strategies for tissue repair. The [...] Read more.
Mesenchymal stromal/stem cells (MSCs) represent an area being intensively researched for tissue engineering and regenerative medicine applications. MSCs may provide the opportunity to treat diseases and injuries that currently have limited therapeutic options, as well as enhance present strategies for tissue repair. The cellular environment has a significant role in cellular development and differentiation through cell–matrix interactions. The aim of this study was to investigate the behavior of adipose-derived MSCs (ad-MSCs) in the context of a cell-derived matrix so as to model the in vivo physiological microenvironment. The fibroblast-derived extracellular matrix (fd-ECM) did not affect ad-MSC morphology, but reduced ad-MSC proliferation. Ad-MSCs cultured on fd-ECM displayed decreased expression of integrins α2 and β1 and subsequently lost their multipotency over time, as shown by the decrease in CD44, Octamer-binding transcription factor 4 (OCT4), SOX2, and NANOG gene expression. The fd-ECM induced chondrogenic differentiation in ad-MSCs compared to control ad-MSCs. Loss of function studies, through the use of siRNA and a mutant Notch1 construct, revealed that ECM-mediated ad-MSCs chondrogenesis requires Notch1 and β-catenin signaling. The fd-ECM also showed anti-senescence effects on ad-MSCs. The fd-ECM is a promising approach for inducing chondrogenesis in ad-MSCs and chondrogenic differentiated ad-MSCs could be used in stem cell therapy procedures. Full article
(This article belongs to the Section Materials Science)
Show Figures

Graphical abstract

19 pages, 4868 KiB  
Article
In Vitro Reversible and Time-Dependent CYP450 Inhibition Profiles of Medicinal Herbal Plant Extracts Newbouldia laevis and Cassia abbreviata: Implications for Herb-Drug Interactions
by Nicholas Ekow Thomford, Kevin Dzobo, Denis Chopera, Ambroise Wonkam, Alfred Maroyi, Dee Blackhurst and Collet Dandara
Molecules 2016, 21(7), 891; https://doi.org/10.3390/molecules21070891 - 7 Jul 2016
Cited by 35 | Viewed by 9080
Abstract
This study evaluated the effects of Newbouldia laevis and Cassia abbreviata extracts on CYP450 enzyme activity. Recombinant CYP450 enzyme and fluorogenic substrates were used for evaluating inhibition, allowing the assessment of herb–drug interactions (HDI). Phytochemical fingerprinting was performed using UPLC-MS. The herbal extracts [...] Read more.
This study evaluated the effects of Newbouldia laevis and Cassia abbreviata extracts on CYP450 enzyme activity. Recombinant CYP450 enzyme and fluorogenic substrates were used for evaluating inhibition, allowing the assessment of herb–drug interactions (HDI). Phytochemical fingerprinting was performed using UPLC-MS. The herbal extracts were risk ranked for HDI based on the IC50 values determined for each CYP enzyme. Newbouldia laevis inhibited CYP1A2, CYP2C9, and CYP2C19 enzyme activities with Ki of 2.84 µg/mL, 1.55 µg/mL, and 1.23 µg/mL, respectively. N. laevis exhibited a TDI (4.17) effect on CYP1A2 but not CYP2C9 and CYP2C19 enzyme activities. Cassia abbreviata inhibited CYP1A2, CYP2C9, and CYP2C19 enzyme activities showing a Ki of 4.86 µg/mL, 5.98 µg/mL, and 1.58 µg/mL, respectively. TDI potency assessment for Cassia abbreviata showed it as a potential TDI candidate (1.64) for CYP1A2 and CYP2C19 (1.72). UPLC-MS analysis showed that Newbouldia laevis and Cassia abbreviata possess polyphenols that likely give them their therapeutic properties; some of them are likely to be responsible for the observed inhibition. The observations made in this study suggest the potential for these herbal compounds to interact, especially when co-administered with other medications metabolized by these CYP450 enzymes. Full article
Show Figures

Graphical abstract

15 pages, 2292 KiB  
Article
Inhibition of CYP2B6 by Medicinal Plant Extracts: Implication for Use of Efavirenz and Nevirapine-Based Highly Active Anti-Retroviral Therapy (HAART) in Resource-Limited Settings
by Nicholas E. Thomford, Charles Awortwe, Kevin Dzobo, Faustina Adu, Denis Chopera, Ambroise Wonkam, Michelle Skelton, Dee Blackhurst and Collet Dandara
Molecules 2016, 21(2), 211; https://doi.org/10.3390/molecules21020211 - 16 Feb 2016
Cited by 35 | Viewed by 6992
Abstract
Highly active antiretroviral therapy (HAART) has greatly improved health parameters of HIV infected individuals. However, there are several challenges associated with the chronic nature of HAART administration. For populations in health transition, dual use of medicinal plant extracts and conventional medicine poses a [...] Read more.
Highly active antiretroviral therapy (HAART) has greatly improved health parameters of HIV infected individuals. However, there are several challenges associated with the chronic nature of HAART administration. For populations in health transition, dual use of medicinal plant extracts and conventional medicine poses a significant challenge. There is need to evaluate interactions between commonly used medicinal plant extracts and antiretroviral drugs used against HIV/AIDS. Efavirenz (EFV) and nevirapine (NVP) are the major components of HAART both metabolized by CYP2B6, an enzyme that can potentially be inhibited or induced by compounds found in medicinal plant extracts. The purpose of this study was to evaluate the effects of extracts of selected commonly used medicinal plants on CYP2B6 enzyme activity. Recombinant human CYP2B6 was used to evaluate inhibition, allowing the assessment of herb-drug interactions (HDI) of medicinal plants Hyptis suaveolens, Myrothamnus flabellifolius, Launaea taraxacifolia, Boerhavia diffusa and Newbouldia laevis. The potential of these medicinal extracts to cause HDI was ranked accordingly for reversible inhibition and also classified as potential time-dependent inhibitor (TDI) candidates. The most potent inhibitor for CYP2B6 was Hyptis suaveolens extract (IC50 = 19.09 ± 1.16 µg/mL), followed by Myrothamnus flabellifolius extract (IC50 = 23.66 ± 4.86 µg/mL), Launaea taraxacifolia extract (IC50 = 33.87 ± 1.54 µg/mL), and Boerhavia diffusa extract (IC50 = 34.93 ± 1.06 µg/mL). Newbouldia laevis extract, however, exhibited weak inhibitory effects (IC50 = 100 ± 8.71 µg/mL) on CYP2B6. Launaea taraxacifolia exhibited a TDI (3.17) effect on CYP2B6 and showed a high concentration of known CYP450 inhibitory phenolic compounds, chlorogenic acid and caffeic acid. The implication for these observations is that drugs that are metabolized by CYP2B6 when co-administered with these herbal medicines and when adequate amounts of the extracts reach the liver, there is a high likelihood of standard doses affecting drug plasma concentrations which could lead to toxicity. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

27 pages, 746 KiB  
Article
Pharmacogenomics Implications of Using Herbal Medicinal Plants on African Populations in Health Transition
by Nicholas E. Thomford, Kevin Dzobo, Denis Chopera, Ambroise Wonkam, Michelle Skelton, Dee Blackhurst, Shadreck Chirikure and Collet Dandara
Pharmaceuticals 2015, 8(3), 637-663; https://doi.org/10.3390/ph8030637 - 21 Sep 2015
Cited by 77 | Viewed by 12522
Abstract
The most accessible points of call for most African populations with respect to primary health care are traditional health systems that include spiritual, religious, and herbal medicine. This review focusses only on the use of herbal medicines. Most African people accept herbal medicines [...] Read more.
The most accessible points of call for most African populations with respect to primary health care are traditional health systems that include spiritual, religious, and herbal medicine. This review focusses only on the use of herbal medicines. Most African people accept herbal medicines as generally safe with no serious adverse effects. However, the overlap between conventional medicine and herbal medicine is a reality among countries in health systems transition. Patients often simultaneously seek treatment from both conventional and traditional health systems for the same condition. Commonly encountered conditions/diseases include malaria, HIV/AIDS, hypertension, tuberculosis, and bleeding disorders. It is therefore imperative to understand the modes of interaction between different drugs from conventional and traditional health care systems when used in treatment combinations. Both conventional and traditional drug entities are metabolized by the same enzyme systems in the human body, resulting in both pharmacokinetics and pharmacodynamics interactions, whose properties remain unknown/unquantified. Thus, it is important that profiles of interaction between different herbal and conventional medicines be evaluated. This review evaluates herbal and conventional drugs in a few African countries and their potential interaction at the pharmacogenomics level. Full article
Back to TopTop