Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Authors = Jefferson David Melo de Matos ORCID = 0000-0003-4507-0785

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4063 KiB  
Article
Biomechanical Behavior of Different Miniplate Designs for Skeletal Anchorage in the Anterior Open Bite Treatment
by Ana Paula Macarani Ielpo, Jefferson David Melo de Matos, Pedro Yoshito Noritomi, Guilherme da Rocha Scalzer Lopes, Daher Antonio Queiroz, Alexandre Luiz Souto Borges and Rodrigo Dias Nascimento
Coatings 2022, 12(12), 1898; https://doi.org/10.3390/coatings12121898 - 5 Dec 2022
Cited by 1 | Viewed by 2237
Abstract
This study aimed to evaluate the stress distribution and mechanical behavior of miniplate designs to skeletal anchorage for the treatment of anterior open bite in adult patients. A complete hemimaxilla, teeth, brackets, transpalatal bar, and three miniplates were virtually modeled. I-, Y-, and [...] Read more.
This study aimed to evaluate the stress distribution and mechanical behavior of miniplate designs to skeletal anchorage for the treatment of anterior open bite in adult patients. A complete hemimaxilla, teeth, brackets, transpalatal bar, and three miniplates were virtually modeled. I-, Y-, and T-shaped miniplates were installed in the area of the alveolar zygomatic crest. The assembly was constricted and three intrusive forces (2, 4, and 6 N) were applied to the maxillary molars and anchorage according to the miniplates. All materials were considered homogeneous, elastic, and linear; the mesh was 1,800,000 hexahedrons with 2,800,000 nodes on average. Displacement, maximum principal stress, and von Mises stress were evaluated according to the shape of the anchorage device and intrusive force. The miniplate configurations resulted in different stress and displacement intensities in the bone tissue and plate; these stresses were always located in the same regions and were within physiological limits. The Y-plate showed the best performance since its application generated less stress in bone tissue with less displacement. Full article
Show Figures

Figure 1

17 pages, 4774 KiB  
Article
Influence of CAD/CAM Abutment Heights on the Biomechanical Behavior of Zirconia Single Crowns
by Jefferson David Melo de Matos, Leonardo Silva Gomes, Nathália de Carvalho Ramos, Daher Antonio Queiroz, João Paulo Mendes Tribst, Tiago Moreira Bastos Campos, Alexandre Luiz Souto Borges, Guilherme da Rocha Scalzer Lopes, Marco Antonio Bottino and Tarcisio José Arruda Paes Junior
Metals 2022, 12(12), 2025; https://doi.org/10.3390/met12122025 - 25 Nov 2022
Cited by 4 | Viewed by 3204
Abstract
The biomechanical behavior of the universal link (titanium base) prosthetic abutment with different heights in implant-supported restorations was evaluated. Forty regular implants (4 × 10 mm) in titanium were used, divided into two groups according to the abutment height (n = 20): [...] Read more.
The biomechanical behavior of the universal link (titanium base) prosthetic abutment with different heights in implant-supported restorations was evaluated. Forty regular implants (4 × 10 mm) in titanium were used, divided into two groups according to the abutment height (n = 20): 4.5 × 4 mm (short) and 4.5 × 5.5 mm (long). Using CAD/CAM technology, zirconia crowns were milled and cemented onto the prosthetic abutments. Half of the specimens were submitted to the initial maximum fracture load test in a universal testing machine. The long abutments presented fracture load (41.1 ± 6.96 kgf) statistically similar to the short abutments (49.5 ± 7.68 kgf). The other half of the specimens were submitted to mechanical cycling (2,000,000 cycles, 2 Hz with a stainless-steel antagonist with a diameter of 1.6 mm), following ISO 14801:2007. Subsequently, the survival of the specimens was evaluated using the survival analysis function, Kaplan–Meier and Mentel–Cox (log- rank) (p < 0.05). The finite element analysis was performed in similar conditions to those used for the in vitro test through computer-aided engineering software (version 19.2, ANSYS Inc., Houston, TX, USA). The biomechanical behavior of both models was similar regardless of the evaluated structure of the set. It was concluded that both short and long abutment presents promising fatigue behavior and stress distribution for use in long-term implant-supported restorations. Full article
(This article belongs to the Section Biobased and Biodegradable Metals)
Show Figures

Figure 1

14 pages, 5007 KiB  
Article
Influence of the Peek Abutments on Mechanical Behavior of the Internal Connections Single Implant
by Jefferson David Melo de Matos, Guilherme da Rocha Scalzer Lopes, Daher Antonio Queiroz, André Luiz Jesus Pereira, Mário Alexandre Coelho Sinhoreti, Nathália de Carvalho Ramos, Vinicius Lino, Flavio Rosa de Oliveira, Alexandre Luiz Souto Borges and Marco Antonio Bottino
Materials 2022, 15(22), 8133; https://doi.org/10.3390/ma15228133 - 16 Nov 2022
Cited by 6 | Viewed by 2290
Abstract
The present study aimed to evaluate the biomechanical behavior of PEEK abutments with different heights on single titanium implants. To investigate the implant surface, different tests (scanning electron microscopy, energy-dispersive X-ray, and X-ray diffraction) were adopted. Herein, 20 implants received the 4.5 × [...] Read more.
The present study aimed to evaluate the biomechanical behavior of PEEK abutments with different heights on single titanium implants. To investigate the implant surface, different tests (scanning electron microscopy, energy-dispersive X-ray, and X-ray diffraction) were adopted. Herein, 20 implants received the 4.5 × 4.0 mm PEEK short abutment (SA) and 20 received the 4.5 × 5.5 mm PEEK long abutment (LA). The abutments were installed using dual-cure resin cement. To determine the fatigue test, two specimens from each group were submitted to the single load fracture test. For this, the samples were submitted to a compressive load of (0.5 mm/min; 30°) in a universal testing machine. For the fatigue test, the samples received 2,000,000 cycles (2 Hz; 30°). The number of cycles and the load test was analyzed by the reliability software SPSS statistics using Kaplan-Meier and Mantel-Cox tests (log-rank) (p < 0.05). The maximum load showed no statistically significant differences (p = 0.189) for the SA group (64.1 kgf) and the LA group (56.5 kgf). The study groups were statistically different regarding the number of cycles (p = 0.022) and fracture strength (p = 0.001). PEEK abutments can be indicated with caution for implant-supported rehabilitation and may be suitable as temporary rehabilitation. Full article
Show Figures

Figure 1

18 pages, 7003 KiB  
Article
Influence of Abutment Design on Biomechanical Behavior to Support a Screw-Retained 3-Unit Fixed Partial Denture
by Guilherme da Rocha Scalzer Lopes, Jefferson David Melo de Matos, Daher Antonio Queiroz, João Paulo Mendes Tribst, Nathália de Carvalho Ramos, Mateus Garcia Rocha, Adriano Baldotto Barbosa, Marco Antonio Bottino, Alexandre Luiz Souto Borges and Renato Sussumu Nishioka
Materials 2022, 15(18), 6235; https://doi.org/10.3390/ma15186235 - 8 Sep 2022
Cited by 5 | Viewed by 2448
Abstract
This study aimed to evaluate the biomechanical behavior of Morse taper implants using different abutments (CMN abutment [(CMN Group] and miniconical abutments [MC Group]), indicated to support a screw-retained 3-unit fixed partial denture. For the in vitro test, polyurethane blocks were fabricated for [...] Read more.
This study aimed to evaluate the biomechanical behavior of Morse taper implants using different abutments (CMN abutment [(CMN Group] and miniconical abutments [MC Group]), indicated to support a screw-retained 3-unit fixed partial denture. For the in vitro test, polyurethane blocks were fabricated for both groups (n = 10) and received three implants in the “offset” configuration and their respective abutments (CMN or MC) with a 3-unit fixed partial denture. Four strain gauges were bonded to the surface of each block. For the finite element analysis, 3D models of both groups were created and exported to the analysis software to perform static structural analysis. All structures were considered homogeneous, isotropic, and elastic. The contacts were considered non-linear with a friction coefficient of 0.3 between metallic structures and considered bonded between the implant and substrate. An axial load of 300 N was applied in three points (A, B, and C) for both methods. The microstrain and the maximum principal stress were considered as analysis criteria. The obtained data were submitted to the Mann–Whitney, Kruskal–Wallis, and Dunn’s multiple comparison test (α = 5%). The results obtained by strain gauge showed no statistical difference (p = 0.879) between the CMN (645.3 ± 309.2 με) and MC (639.3 ± 278.8 με) and allowed the validation of computational models with a difference of 6.3% and 6.4% for the microstrains in the CMN and MC groups, respectively. Similarly, the results presented by the computational models showed no statistical difference (p = 0.932) for the CMN (605.1 ± 358.6 με) and MC (598.7 ± 357.9 με) groups. The study concluded that under favorable conditions the use of CMN or MP abutments to support a fixed partial denture can be indicated. Full article
(This article belongs to the Topic Advances in Biomaterials)
Show Figures

Figure 1

14 pages, 1376 KiB  
Review
Dental Ceramics: Fabrication Methods and Aesthetic Characterization
by Jefferson David Melo de Matos, Guilherme Rocha Scalzer Lopes, Daher Antonio Queiroz, Leonardo Jiro Nomura Nakano, Nathália Carvalho Ramos Ribeiro, Adriano Baldotto Barbosa, Lilian Costa Anami and Marco Antonio Bottino
Coatings 2022, 12(8), 1228; https://doi.org/10.3390/coatings12081228 - 22 Aug 2022
Cited by 18 | Viewed by 12624
Abstract
This study aimed to describe different staining protocols for the main dental ceramics. A bibliographic search was conducted in the main health databases PubMed and Scholar Google, in which 100 studies published were collected. In vitro and in silico studies, case reports, and [...] Read more.
This study aimed to describe different staining protocols for the main dental ceramics. A bibliographic search was conducted in the main health databases PubMed and Scholar Google, in which 100 studies published were collected. In vitro and in silico studies, case reports, and systematic and literature reviews, on ceramic materials, were included. Therefore, articles that did not deal with the topic addressed were excluded. Ceramics can be classified into glass-matrix ceramics (etchable), polycrystalline (non-etchable), and hybrid ceramics. In this context, different fabrication methods, method indications, and characterization layers can be used for each ceramic group and numerous protocols differ according to the choice of material. Several ceramic systems are available, thus professionals in the prosthetic area need constant updates on dental ceramic restorations and their proper characterizations. Full article
(This article belongs to the Special Issue Preparation and Application of Multifunctional Ceramic Materials)
Show Figures

Figure 1

22 pages, 13182 KiB  
Review
Bioengineering Tools Applied to Dentistry: Validation Methods for In Vitro and In Silico Analysis
by Jefferson David Melo de Matos, Daher Antonio Queiroz, Leonardo Jiro Nomura Nakano, Valdir Cabral Andrade, Nathália de Carvalho Ramos Ribeiro, Alexandre Luiz Souto Borges, Marco Antonio Bottino and Guilherme da Rocha Scalzer Lopes
Dent. J. 2022, 10(8), 145; https://doi.org/10.3390/dj10080145 - 4 Aug 2022
Cited by 18 | Viewed by 3427
Abstract
This study aimed to evaluate the use of bioengineering tools, finite element analysis, strain gauge analysis, photoelastic analysis, and digital image correlation, in computational studies with greater validity and reproducibility. A bibliographic search was performed in the main health databases PUBMED and Scholar [...] Read more.
This study aimed to evaluate the use of bioengineering tools, finite element analysis, strain gauge analysis, photoelastic analysis, and digital image correlation, in computational studies with greater validity and reproducibility. A bibliographic search was performed in the main health databases PUBMED and Scholar Google, in which different studies, among them, laboratory studies, case reports, systematic reviews, and literature reviews, which were developed in living individuals, were included. Therefore, articles that did not deal with the use of finite element analysis, strain gauge analysis, photoelastic analysis, and digital image correlation were excluded, as well as their use in computational studies with greater validity and reproducibility. According to the methodological analysis, it is observed that the average publication of articles in the Pubmed database was 2.03 and with a standard deviation of 1.89. While in Google Scholar, the average was 0.78 and the standard deviation was 0.90. Thus, it is possible to verify that there was a significant variation in the number of articles in the two databases. Modern dentistry finds in finite element analysis, strain gauge, photoelastic and digital image correlation a way to analyze the biomechanical behavior in dental materials to obtain results that assist to obtain rehabilitations with favorable prognosis and patient satisfaction. Full article
(This article belongs to the Special Issue Advances in Oral Implant Health)
Show Figures

Figure 1

12 pages, 6488 KiB  
Article
Implant—Abutment Misfit after Cyclic Loading: An In Vitro Experimental Study
by John Eversong Lucena de Vasconcelos, Jefferson David Melo de Matos, Daher Antonio Queiroz, Guilherme da Rocha Scalzer Lopes, Bruna Caroline Gonçalves Vasconcelos de Lacerda, Marco Antonio Bottino, Cecilia Pedroso Turssi, Roberta Tarkany Basting, Flávia Lucisano Botelho do Amaral and Fabiana Mantovani Gomes França
Materials 2022, 15(15), 5341; https://doi.org/10.3390/ma15155341 - 3 Aug 2022
Cited by 8 | Viewed by 2848
Abstract
This study aimed to evaluate the influence of thermomechanical cycling (TMC) and type of abutment on the misfit and compressive strength of the implant–abutment interface. Forty 3.75-mm external hexagon implants with 25° angled abutments were divided into four groups (N = 10). Group [...] Read more.
This study aimed to evaluate the influence of thermomechanical cycling (TMC) and type of abutment on the misfit and compressive strength of the implant–abutment interface. Forty 3.75-mm external hexagon implants with 25° angled abutments were divided into four groups (N = 10). Group A: overcast plus TMC; Group B: overcast without TMC; Group C: completely cast plus TMC; Group D: completely cast without TMC. Abutments were fixed to the implants with 32-Ncm torque, and groups A and C specimens were cyclically loaded at 80 N with 2 Hz for 1 million cycles. The misfit on the implant–abutment interface was evaluated by optical microscope (100×) and the compressive strength test was performed in a universal test machine. For statistical analysis, a two-way ANOVA and post hoc Tukey test were used. There was no difference in misfit presented by all the abutments in the absence of TMC (p > 0.05). When TMC was performed, the completely cast abutments showed greater misfit than overcast ones (p = 0.001). Regarding compressive strength, irrespective of TMC performed, the overcast abutments showed higher compressive strength values than completely cast abutments (p = 0.003). Moreover, disregarding the type of abutment used, the absence of TMC provided higher compressive strength values (p < 0.001). It was concluded that thermomechanical cyclic loading aggravated the misfit, especially in completely cast abutments, regardless of material or fabrication technique, and reduced the compressive strength of the two types of abutments tested. Full article
(This article belongs to the Special Issue Damage and Mechanical Properties of Materials)
Show Figures

Figure 1

15 pages, 4371 KiB  
Article
Influence of Framework Material and Posterior Implant Angulation in Full-Arch All-on-4 Implant-Supported Prosthesis Stress Concentration
by João Paulo Mendes Tribst, Dayana Campanelli de Morais, Jefferson David Melo de Matos, Guilherme da Rocha Scalzer Lopes, Amanda Maria de Oliveira Dal Piva, Alexandre Luiz Souto Borges, Marco Antonio Bottino, Antonio Lanzotti, Massimo Martorelli and Pietro Ausiello
Dent. J. 2022, 10(1), 12; https://doi.org/10.3390/dj10010012 - 14 Jan 2022
Cited by 41 | Viewed by 9469
Abstract
This study evaluated the influence of distal implants angulation and framework material in the stress concentration of an All-on-4 full-arch prosthesis. A full-arch implant-supported prosthesis 3D model was created with different distal implant angulations and cantilever arms (30° with 10-mm cantilever; 45° with [...] Read more.
This study evaluated the influence of distal implants angulation and framework material in the stress concentration of an All-on-4 full-arch prosthesis. A full-arch implant-supported prosthesis 3D model was created with different distal implant angulations and cantilever arms (30° with 10-mm cantilever; 45° with 10-mm cantilever and 45° with 6-mm cantilever) and framework materials (Cobalt–chrome [CoCr alloy], Yttria-stabilized tetragonal zirconia polycrystal [Y-TZP] and polyetheretherketone [PEEK]). Each solid was imported to computer-aided engineering software, and tetrahedral elements formed the mesh. Material properties were assigned to each solid with isotropic and homogeneous behavior. The contacts were considered bonded. A vertical load of 200 N was applied in the distal region of the cantilever arm, and stress was evaluated in Von Misses (σVM) for prosthesis components and the Maximum (σMAX) and Minimum (σMIN) Principal Stresses for the bone. Distal implants angled in 45° with a 10-mm cantilever arm showed the highest stress concentration for all structures with higher stress magnitudes when the PEEK framework was considered. However, distal implants angled in 45° with a 6-mm cantilever arm showed promising mechanical responses with the lowest stress peaks. For the All-on-4 concept, a 45° distal implants angulation is only beneficial if it is possible to reduce the cantilever’s length; otherwise, the use of 30° should be considered. Comparing with PEEK, the YTZP and CoCr concentrated stress in the framework structure, reducing the stress in the prosthetic screw. Full article
Show Figures

Figure 1

Back to TopTop