Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Authors = Gudekote Manjunatha

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 47564 KiB  
Article
Impact of Electroosmosis and Wall Properties in Modelling Peristaltic Mechanism of a Jeffrey Liquid through a Microchannel with Variable Fluid Properties
by Choudhari Rajashekhar, Fateh Mebarek-Oudina, Ioannis E. Sarris, Hanumesh Vaidya, Kerehalli V. Prasad, Gudekote Manjunatha and Hadimane Balachandra
Inventions 2021, 6(4), 73; https://doi.org/10.3390/inventions6040073 - 28 Oct 2021
Cited by 18 | Viewed by 3277
Abstract
The current work emphasizes the modelling of the electroosmosis-modulated peristaltic flow of Jeffery liquid. Such flows emerge in understanding the movement of biological fluids in a microchannel, such as in targeted drug delivery and blood flow through micro arteries. The non-Newtonian fluid flows [...] Read more.
The current work emphasizes the modelling of the electroosmosis-modulated peristaltic flow of Jeffery liquid. Such flows emerge in understanding the movement of biological fluids in a microchannel, such as in targeted drug delivery and blood flow through micro arteries. The non-Newtonian fluid flows inside a non-uniform cross-section and an inclined microchannel. The effects of wall properties and variable fluid properties are considered. The long wavelength and small Re number approximations are assumed to simplify the governing equations. Debye-Hückel linearization is also utilized. The nonlinear governing equations are solved by utilizing the perturbation technique. MATLAB is used for the solution, velocity, temperature, skin friction, coefficient heat transport, concentration, shear wood number, and streamlines expressions. The obtained result in optimal electroosmotic velocity (or Helmholtz-Smoluchowski velocity) increases from −1 to 6; the axial circulation has substantial momentum. For larger optimal electroosmotic velocity, a subsequent boost in an axial electric field causes a significant deceleration. Further, the study helps biomedical engineers to create biomicrofluidics devices that may aid in carrying biological fluids. Full article
(This article belongs to the Collection Feature Innovation Papers)
Show Figures

Figure 1

Back to TopTop