Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Authors = Fatmah Nasser Almotawah

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3648 KiB  
Review
Artificial Intelligence in Dentistry: A Descriptive Review
by Sreekanth Kumar Mallineni, Mallika Sethi, Dedeepya Punugoti, Sunil Babu Kotha, Zikra Alkhayal, Sarah Mubaraki, Fatmah Nasser Almotawah, Sree Lalita Kotha, Rishitha Sajja, Venkatesh Nettam, Amar Ashok Thakare and Srinivasulu Sakhamuri
Bioengineering 2024, 11(12), 1267; https://doi.org/10.3390/bioengineering11121267 - 13 Dec 2024
Cited by 9 | Viewed by 6749
Abstract
Artificial intelligence (AI) is an area of computer science that focuses on designing machines or systems that can perform operations that would typically need human intelligence. AI is a rapidly developing technology that has grabbed the interest of researchers from all across the [...] Read more.
Artificial intelligence (AI) is an area of computer science that focuses on designing machines or systems that can perform operations that would typically need human intelligence. AI is a rapidly developing technology that has grabbed the interest of researchers from all across the globe in the healthcare industry. Advancements in machine learning and data analysis have revolutionized oral health diagnosis, treatment, and management, making it a transformative force in healthcare, particularly in dentistry. Particularly in dentistry, AI is becoming increasingly prevalent as it contributes to the diagnosis of oro-facial diseases, offers treatment modalities, and manages practice in the dental operatory. All dental disciplines, including oral medicine, operative dentistry, pediatric dentistry, periodontology, orthodontics, oral and maxillofacial surgery, prosthodontics, and forensic odontology, have adopted AI. The majority of AI applications in dentistry are for diagnoses based on radiographic or optical images, while other tasks are less applicable due to constraints such as data availability, uniformity, and computational power. Evidence-based dentistry is considered the gold standard for decision making by dental professionals, while AI machine learning models learn from human expertise. Dentistry AI and technology systems can provide numerous benefits, such as improved diagnosis accuracy and increased administrative task efficiency. Dental practices are already implementing various AI applications, such as imaging and diagnosis, treatment planning, robotics and automation, augmented and virtual reality, data analysis and predictive analytics, and administrative support. The dentistry field has extensively used artificial intelligence to assist less-skilled practitioners in reaching a more precise diagnosis. These AI models effectively recognize and classify patients with various oro-facial problems into different risk categories, both individually and on a group basis. The objective of this descriptive review is to review the most recent developments of AI in the field of dentistry. Full article
Show Figures

Figure 1

16 pages, 1417 KiB  
Review
Silver Nanoparticles in Dental Applications: A Descriptive Review
by Sreekanth Kumar Mallineni, Srinivasulu Sakhamuri, Sree Lalita Kotha, Abdul Rahman Gharamah M. AlAsmari, Galiah Husam AlJefri, Fatmah Nasser Almotawah, Sahana Mallineni and Rishitha Sajja
Bioengineering 2023, 10(3), 327; https://doi.org/10.3390/bioengineering10030327 - 5 Mar 2023
Cited by 47 | Viewed by 8220
Abstract
Silver nanoparticles have been a recent focus of many researchers in dentistry, and their potential uses and benefits have drawn attention in dentistry and medicine. The fabrication and utilization of nanoscale substances and structures are at the core of the rapidly developing areas [...] Read more.
Silver nanoparticles have been a recent focus of many researchers in dentistry, and their potential uses and benefits have drawn attention in dentistry and medicine. The fabrication and utilization of nanoscale substances and structures are at the core of the rapidly developing areas of nanotechnology. They are often used in the dental industry because they prevent bacteria from making nanoparticles, oxides, and biofilms. They also stop the metabolism of bacteria. Silver nanoparticles (AgNPs) are a type of zero-dimensional material with different shapes. Dentistry has to keep up with changing patient needs and new technology. Silver nanoparticles (AgNPs) can be used in dentistry for disinfection and preventing infections in the oral cavity. One of the most interesting metallic nanoparticles used in biomedical applications is silver nanoparticles (AgNPs). The dental field has found promising uses for silver nanoparticles (AgNPs) in the elimination of plaque and tartar, as well as the elimination of bacterial and fungal infections in the mouth. The incorporation of AgNPs into dental materials has been shown to significantly enhance patients’ oral health, leading to their widespread use. This review focuses on AgNP synthesis, chemical properties, biocompatibility, uses in various dental fields, and biomaterials used in dentistry. With an emphasis on aspects related to the inclusion of silver nanoparticles, this descriptive review paper also intends to address the recent developments of AgNPs in dentistry. Full article
(This article belongs to the Special Issue Feature Papers in Nanotechnology Applications in Bioengineering)
Show Figures

Figure 1

17 pages, 2379 KiB  
Article
Penetration and Adaptation of the Highly Viscous Zinc-Reinforced Glass Ionomer Cement on Contaminated Fissures: An In Vitro Study with SEM Analysis
by Galiah Husam AlJefri, Sunil Babu Kotha, Muhannad Hani Murad, Reham Mohammed Aljudaibi, Fatmah Nasser Almotawah and Sreekanth Kumar Mallineni
Int. J. Environ. Res. Public Health 2022, 19(10), 6291; https://doi.org/10.3390/ijerph19106291 - 22 May 2022
Cited by 4 | Viewed by 2969
Abstract
Objective: To evaluate the penetration and adaptation of highly viscous zinc-reinforced glass ionomer cement (ZRGIC), using a scanning electron microscope (SEM), when applied under various contaminated conditions on grooves and fissures of primary second molars. Materials and Methods: A total of 40 extracted [...] Read more.
Objective: To evaluate the penetration and adaptation of highly viscous zinc-reinforced glass ionomer cement (ZRGIC), using a scanning electron microscope (SEM), when applied under various contaminated conditions on grooves and fissures of primary second molars. Materials and Methods: A total of 40 extracted human primary second molars were randomly assigned into five groups (8 teeth each), with different surface conditions (conditioned with 40% polyacrylic acid, dry condition, water contamination, saliva contamination, or saliva contamination and air-drying) on the occlusal surface before placement of zinc-reinforced highly viscous glass ionomer cement with the finger-press technique. After sectioning the teeth, they were subjected to SEM analysis, where four in each group underwent aging by thermocycling and the other four were without aging. ANOVA tests, post hoc analysis, and unpaired t-tests were used for statistical analyses. Results: There was a significant statistical difference in the sealant penetration in the non-aging group, but in the aging group, there was no significant statistical difference in the sealant penetration. On other hand, a significant statistical difference was found in the adaptation between all the groups (p < 0.05). Highly viscous zinc-reinforced glass ionomer fissure sealants have better fissure penetration and more intimate adaptation under fissures conditioned with 40% polyacrylic acid and dry surface fissures with no contamination. However, the best penetration and retention after aging were under contaminated fissures with a shiny layer of saliva. Conclusions: The ZRGIC is a highly viscous fluoride-releasing cement, effectively seals fissures by interfering with food lodgment and protecting teeth from caries. It is advisable to restore the fissures with the minimal technique of sensitive fluoride-releasing GIC, particularly in young, uncooperative children, rather than leaving a caries-prone environment. Full article
(This article belongs to the Special Issue Advances in Pediatric Dental Care in Relation to Public Health)
Show Figures

Figure 1

Back to TopTop